Policy Forum 97-04: Technological Alternatives to Reduce Emissions from Energy Production in Northeast Asia

NAPSNet Policy Forum

Recommended Citation

"Policy Forum 97-04: Technological Alternatives to Reduce Emissions from Energy Production in Northeast Asia", NAPSNet Policy Forum, March 14, 1997, https://nautilus.org/napsnet/napsnet-policy-forum/technological-alternatives-to-reduce-emissions-from-energy-production-in-northeast-asia/

Technological Alternatives to Reduce Emissions from Energy Production in Northeast Asia

March, 1997

The ESENA Policy Forum Online is intended to provide expert analysis of contemporary energy, security and environmental issues in Northeast Asia, and an opportunity to participate in discussion of the analysis. A set of questions based on the work below is appended below. The Nautilus Institute invites your responses, based either on these questions or on any other thoughts you have after reading the work. We will post selected responses on our Web site. Please send your responses to us at: esena@nautilus.org.



“Technological Alternatives to Reduce Emissions from Energy Production in Northeast Asia”

By Dr. David Von Hippel

Copyright (c) 1997 Nautilus of America/The Nautilus Institute

This report was developed with support from:
The W. Alton Jones Foundation
The U.S.-Japan Foundation
The Center for Global Partnership



Acid rain, caused primarily by emissions of nitrogen and sulfur oxides (NOx and SOx), is already having an environmental and economic impact in the countries of Northeast Asia. The problem is regional in scope, as emissions cross national boundaries and can have impacts in other nations. Projected growth in energy consumption in the region, particularly in the now-developing economies, creates the potential for vastly increased emissions in coming decades. This paper reviews a selection of options for reducing NOx and SOx emissions in five categories: post-combustion pollution control, burner modification, fuel pre-treatment, fuel-switching, and energy efficiency improvement. The relative cost per unit of emissions reduction of measures from each category are compared. A number of different options for regional cooperation to address SOx and NOx emissions reduction are suggested, as are particular opportunities for collaboration between the United States and Japan to assist countries of the region in reducing emissions.

Executive Summary

Of the many environmental concerns currently facing the nations of Northeast Asia, the problem of “acid rain” or “acid precipitation” presents perhaps the most potent combination of immediate and ongoing impact and regional scope. Acid rain in Asia has already been implicated in the declining health of some of the region’s forests, in the premature weathering of metals and other man-made materials, and in the degradation of irreplaceable cultural monuments. Acid precipitation is primarily the result of the reaction of oxides of sulfur and nitrogen (SOx and NOx) the “acid gases”-with water or water vapor, yielding sulfuric and nitric acids. Acid gases can act as local air pollutants, or, depending on weather conditions and how they are emitted, can be transported for hundreds of kilometer or more. Acid gases are produced primarily when fuels are combusted, although smelting of the ores of some metals is also a significant source of sulfur oxides.

The recent and projected growth in economic output and fuels use in Northeast Asia creates both a challenge and an opportunity. The challenge is that unless changes are made in the way that fuels are used, acid rain and other environmental problems threaten to seriously erode (literally and figuratively) the gains of development. The projected increase in fuels use does, however, provide an opportunity for the countries of the region, in cooperation, to promote a development path for the developing nations of Northeast Asia that takes advantage of a suite of available measures — measures that not only reduce acid gas emissions, but can concurrently provide other environmental and economic benefits.

The types of measures available to reduce the quantities of acid gases emitted from the energy sector include:

  • “Post-combustion” or “end-of-pipe” measures designed to remove SOx or NOx by reaction of the acid gas with a chemical and/or a catalyst. These technologies, including the “flue gas desulphurization” devices or “scrubbers” now common on coal-fired plants in industrialized countries, are best suited to utility and large industrial applications, although the catalytic converter is an example of an end-of-pipe technology used in the transport sector.
  • Burner modification measures change the way that a fuel is burned so as to avoid acid gas emissions. For sulfur oxide emissions control, this generally means either injecting a chemical (usually lime or limestone) into the area where the fuel is burned. NOx is more typically controlled by manipulating the physical configuration of the burner, including the zones where fuel and air are added in the boiler or furnace. Burner modifications can be used on a variety of equipment, including industrial, commercial/institutional, and some residential-scale applications. Burner modifications are most cost-effective on new equipment, but are often also cost effective for existing units.
  • Fuel pre-treatment measures that can be used to reduce acid gas emissions include washing of coal (already widely practiced in China), changing refinery processes to produce heavy fuel oil and diesel oil with lower sulfur contents, or simply changing supply patterns to use lower-sulfur imported or domestic fuels in the first place.
  • Fuel-switching measures that replace the use of higher-sulfur coal or oil with low-sulfur natural gas or biomass fuels, or with electricity generated via hydroelectric, wind, solar photovoltaic, nuclear, or other fossil-free means.
  • Energy-efficiency measures that deliver the same energy service-a liter of water heated, a passenger kilometer of travel, or a tonne of cement produced, for example-with less fuel input than standard-efficiency equipment.

Of these categories of measures, fuel-switching and energy-efficiency measures hold the most promise for reducing acid gases at costs that are either relatively low or negative (meaning that the measures pay for themselves with fuel, capital, and operating savings alone) on a net basis. End-of-pipe and burner modification measures are will continue to be important to retrofit the existing equipment in the region and to the extent that growth in coal-fired power will continue to occur. Burner modifications (such as “low-NOx” burners) in new combustion equipment typically add little to the cost of producing the equipment, and should be uniformly applied (as is increasingly the practice in industrialized countries). Coal cleaning will continue to be important to reduce the sulfur and ash content of lower-quality coals, to improve the combustion properties of coal, and to reduce coal transport costs. The reduction of sulfur contents of refined products is not a present widely applicable in China, which now uses mainly low-sulfur crude oil in its refineries, but probably will be in the future as China is forced to purchase more and more higher-sulfur crude oil from the Middle East.

How can regional cooperation help to implement some of these measures? Possibilities include:

  • Provide Information and General Training to Government Officials to increase their understanding of the issues and support for key programs.
  • Provide Specific Information and Training to Local Actors so that domestic or imported technologies can be used most effectively.
  • Encourage the Implementation and Enforcement of Energy and Environmental Standards to further encourage environmentally-sustainable development.
  • Establish Programs of Grants and Concessional Loans to catalyze the introduction of appropriate technologies.
  • Modify Existing Incentives for Energy Efficiency and Pollution Prevention to remove social and economic roadblocks to improved practices.
  • Promote Joint Ventures and Licensing Agreements to start the manufacturing of appropriate acid gas-reduction technologies in the developing countries of the region.

Some potential starting points for United States-Japan and regional collaboration in reducing acid gas emissions in Northeast Asia might include:

  • Create a clearinghouse for summary and detailed information on acid gas reduction measures where planners, officials, plant managers, entrepreneurs, and others can access to up-to-date information on the types of technologies and measures are available for acid gas reduction, and how they can be obtained.
  • Create a trade liaison to promote the transfer of appropriate technologies.
  • Promote and sponsor study tours and in-country training activities for personnel from the developing countries of the region.
  • Promote and assist in applications that demonstrate promising technologies, including providing equipment, expertise, and financial assistance.
  • Help to fund and organize regulatory infrastructure in China and North Korea, including providing know-how and equipment for testing laboratories, monitoring facilities, and research installations.

Read the complete version of
“Technological Alternatives to Reduce Acid Gas and Related Emissions from Energy-Sector Activities in Northeast Asia”

The Nautilus Institute Invites Your ResponsesYour are invited to participate in this “Online Policy Forum” by considering the questions below, or collecting any other thoughts you have after reading the paper, and then emailing your comments to: esena@nautilus.org . The Nautilus Institute will review responses and post selections to this web site.

1. The Nautilus Institute commissioned this paper with the believe that the growing problem of transboundary, energy-related air pollution-primarily acid rain generated by the emissions from coal-fired plants has already emerged as a major ecological and health problem and as an irritant in regional relations. Should the reduction of sulfur and nitrous oxides be a priority in Northeast Asia?

2. Of the current and appropriate technological alternatives for reducing emissions from energy production, Dr. Von Hippel suggests that fuel-switching and energy-efficiency measures are the most effective means of reducing acid gases. However, in Northeast Asia, many experts continue to promote nuclear power as the most effective way of meeting energy needs and reducing emissions? Which energy strategy is most appropriate for China? North Korea? South Korea? Japan?

3. Von Hippel suggests a number of joint US-Japanese policy initiatives which might be feasible and useful at either a concerted, unilateral-basis, or on a joint basis, either directly with China, or with the region as a whole. There are many others. What format might such initiatives take?

nautilus-logo-smallThe NAPSNet Policy Forum provides expert analysis of contemporary peace and security issues in Northeast Asia. As always, we invite your responses to this report and hope you will take the opportunity to participate in discussion of the analysis.