Library of Congress

7934 CVIII (81)

AID Report 60-77

31 October 1960

REACTORS

DEVELOPED IN THE USER AND ITS BLOC COUNTRIES

XEROX

Library Services Section
Air Information Division

REACTORS

DEVELOPED IN THE USSR AND ITS BLOC COUNTRIES

Library Services Section
Air Information Division

FOREWORD

For some time there has been a real need for easyreference tables to the reactors developed in the USSR
and its bloc countries. This report represents our first
attempt to satisfy the need. The information in the following pages has been compiled from Soviet and Soviet
Bloc monographs, reports, conference proceedings and papers, and newspapers published between 1955 - October 1,
1960.

Although reactors were in operation in the USSR as early as 1947, no information concerning them was found in its publications until 1955.

The main features of all reactors are listed: name, type, uses and applications, affiliation, location, start-up-date, maximum neutron flux, power (thermal and electrical), fuel, moderator, reflector, coolant, shielding, experimental facilities, remarks and references.

In order to clarify interpretation of the Soviet trademarks and designation symbols, the original Cyrillic letters have been retained. Transliteration used by the Board on Geographic Names follows the original symbols.

In Part I a review is made of all known research and experimental reactors formerly or presently in operation in the Soviet Union.

Part II lists power stations in operation or in advanced stages of planning or design and when available, their specific geographic location in the USSR.

In Part III experimental and research reactors and power stations in Bulgaria, China, Czechoslovakia, East Germany, Egypt, Hungary, Morth Korea, Poland, Romania, and Yugoslavia are identified.

Part IV consists of bibliographical references.

They are arranged alphabetically by author and numerically for ready cross reference. The numerals in brackets in Parts I, II, and III refer to bibliographical references; the numerals following the brackets indicate pages in the source. Entries for monographs are given in Russian followed by an English translation.

Library of Congress call numbers are included at the end of the entries when the source is cataloged and available in its collections.

Although this report was initiated prior to the receipt of Work Assignment No. 16 levied upon the Division by its sponsoring agency, it is submitted in partial fulfillment of this assignment.

TABLE OF CONTENTS

FOF	REWORD	11
I.	RESEARCH AND EXPERIMENTAL REACTORS OF THE USSR	
	Первый советский [First Soviet] TP or TBP [TR or TVR] NP [IR] MP or PФТ [MR or RFT] ГВФ [GVF] ВВР, ВЕР-2 ог ЭЯР [VVR, VVR-2 or EYAR] БРФ [BRF] ВВР-С [VVR-S] Moscow Gaseous UF6 reactor Pulsed reactor BBP-C [VVR-S] Tashkent, Uzbekskaya SSR NPT-1000 [IRT-1000] NPT-2000 [IRT-2000] NPT-2000 [IRT-2000] Sverdlovsk NPT-2000 [IRT-2000] Tbilisi, Gruzinskaya SSR NPT-2000 [IRT-2000] Tomsk NPT-2000 [IRT-2000] Malyye Dubny, Belcrusskaya SSR	12 34 56 7 8 9 10 11 12 13 14 15 16 17
	MPT-2000 [IRT-2000] Salaspils, Latviyskaya SSR EP-1 [BR-1] EP-2 [BR-2] EP-3 [ER-3] EP-4 [ER-4] EP-4 [ER-5] BBP-M [VVR-M] Leningrad BBP-M [VVR-M] Kiyev, Ukrainskaya SSR CM [SM] BBP-U [VVR-TS]	18 19 20 21 22 23 24 25 26 27
II.	POWER STATIONS	
	APRIC or APC [ARPS or ARS] Beloyarskaya ARS im. I.V. Kurchatova Siberian	28 29 30
	Sodium cooled, graphite moderated	31 32 33
	Mobile power station	32 33 35 35 37
	EH-50 [BN-50] EH-50 [BN-50] Marine propulsion reactor "Lenin"	38 39 40

III. RESEARCH AND POWER REACTORS IN:

	Bulgaria NPT-1000 [IRT-1000]	41
	China	
	TBP-C [TVR-S]	42 43
	Czechoslovakia:	כי
:	BBP-C [VVR-S]	44 45
	East Germany:	
	BBP-C [VVR-S] BBP-70 [VVRR-70] (power station)	46 47
	Egypt:	
	BBP-C [VVR-S]	48
	BBP-C [VVR-S] Hungarian subcritical reactor	49 50
	North Korea: MPT-1000 [IRT-1000]:	51
. •	Poland:	
	Second Polish research reactor Graphite-moderated experimental assembly	52 53 54
	Rimania:	
	BBP-C [VVR-S]	55
	Yugoslavia:	
	RBTBP-C [TVR-S]	56
		57
BIBLIO	GRAPHIC REFERENCES	58

Первый советский [First Soviet]

TYPE:

Thermal, heterogeneous, graphite

USES OR

APPLICATION:

a) physical experiments

b) production of isotopes

AFFILIATION:

Academy of Sciences, USBR

LOCATION:

Moscow, USSR

START-UP-DATE:

Approx. 1947

MAXIMUM NEUTRON FLUX n/cm²/sec:

POWER kw:

Several thousand (th)

FUEL:

45 t of metallic uranium in blocks 30 x 40 mm in dia.

MODERATOR:

Graphite

REFLECTOR:

Graphite 80 cm

COOLANT:

SHIRLDING:

EXPERIMENTAL FACILITIES:

REMARKS:

1st reactor in Europe

REFERENCES:

[40]; p. 6-14; [41], p. 15-28; [68]; [88], p. 136-317;

TP or TBP [TR or TVR]

TYPE:

Thermal, heterogeneous, heavy-water

USES OR

APPLICATION:

Experiments:

a) nuclear physics
b) radiochemistry

c) neutron densities Production of isotopes

AFFILIATION:

Thermotechnical Laboratory of the Academy of Sciences USSR

LOCATION:

Moscow, USSR

START-UP-DATE:

April, 1949; reconstructed and put into operation June 1957

MAXIMUM

NEUTRON FLUX n/cm²/sec:

Initial: 2 x 1012; after reconstruction: 2.5 x 1013

POWER kw:

Initial: 500; after reconstruction: 2,500 (th)

FUEL:

Initial: natural uranium (2.5 t) after reconstruction:

enriched uranium 2% U-235 (270 kg)

MODERATOR:

D₂O (5 t)

REFLECTOR:

Graphite; upper reflector, variable to 580 mm; 1 m thick in space between inner tank and the steel vessel; sides

and bottom, 300 mm D20

COOLANT:

D_OO

SHIKIDING:

2.5 m concrete; entire apparatus is surrounded by water 1 m

thick

EXPERIMENTAL

PACILITIES:

After reconstruction: 52 vertical channels with dia. from 50-100 mm; 24 channels enter the reactor core and 28

enter the graphite reflector some-

REMARKS:

The reactor was designed in 1947, installed in 1948

REFERENCES:

[4]; [42]; [45], p. 321, 336-340; [60], p. 43; [88], p. 144-145;

[93a]

MP [IR]

TYPE:

Thermal, heterogeneous, graphite

USES OR

APPLICATION:

Production of radio-active isotopes

AFFILIATION:

LOCATION:

START-UP-DATE:

1952

MUMIXAM

NEUTRON FLUX n/om²/sec:

From 3 up to 4.5 x 1013

POWER kw:

50,000 (th)

FUEL:

Uranium enriched 2% U-235 (3t); total 248 cells, of which 140 are loaded; reactor was disassembled to rectify damage in the reactor masonry; put into operation in

1957

MODERATOR:

Folycrystallic artificial graphite

REFLECTOR:

Polycrystallic artificial graphite (upper, 1.5 m thick)

COOLANT:

MoO flow from top to bottom, outlet temperature about 80 to

90*0

SHIRLDING:

Upper, 1.5 m of concrete and 50 cm of cadmium layer with 20 cm

of aluminium alloy bricks

EXPERIMENTAL PACILITIES:

REMARKS:

Disassembly and reassembly of the reactor, including the relaxation time prior to the disassembly work, was close

to 10 months; the integral neutron flux during the reactor operation (4 years) was 4.5 x 10²¹ n/cm²

REFERENCES:

[20] .

MP or POT [MR or RFT]

TYPE:

Thermal, heterogeneous, graphite, pressurized water

USES OR

APPLICATION:

a) physical researchb) reactor engineering

AFFILIATION:

Institute of Atomic Energy of the Academy of Sciences DSSR

LOCATION:

Moscow, USSR

START-UP-DATE:

April 1952; reconstructed in 1957

MAXIMUM NEUTRON FLUX n/cm²/sec:

Initial: 8 x 1013; after reconstruction: 1.8 x 1014

POWER kw:

Initial: 10,000 (th); after reconstruction: 15,000 to 20,000

FUEL:

Initial: natural uranium enriched 15% U-235; after reconstruction: uranium enriched 90% U-235

MODERATOR:

Graphite and H20

REFLECTOR:

Graphite; top and side, 80 cm; bottom, 60 cm

COOLANT:

E20

SHIRLDING:

Top, 150 cm graphite, 40 cm Pb, 20 cm thick iron slab; side, layer of iron 2.5 cm thick

EXPERIMENTAL

FACILITIES:

A square lattice with 14-cm channel spacing 11 vertical channels for experiments on loops 15 vertical channels for testing fuel elements

15-20 fuel elements in central region for irradiation of materials and the production of isotopes

REMARKS

The essential foundation of the Soviet nuclear power program. After reconstruction, thermal output: 3,640 km/kg U-235

REFERENCES:

[6], p. 651-654; [33]; [40]; [41], p. 14-22; [45], p. 321-331; [70]

TBO [GVF]

TYPE:

Thermal, heterogeneous, graphite

USES OR

APPLICATION:

Reactor engineering, preliminary calculations for future

atomic power stations

AFFILIATION:

Atomic Power Station of the Academy of Sciences USSR

LOCATION:

Chninsk, USSR

START-UP-DATE

MAXIMUM

NEUTRON FLUX

n/cm²/sec:

POWER kw:

FUEL:

Uranium enriched 10% U-235 (U308 powder between two

stainless steel tubes)

MODERATOR:

Graphite and H,0 (6.3 kg)

REFLECTOR:

Graphite; bottom, 40 cm; top and side, 54 cm

COOLANT:

SHIELDING:

EXPERIMENTAL

FACILITIES:

REMARKS:

A square lattice with 140 mm spacing

REFERENCES:

[60], p. 146; [68], p. 3-4

BBP. BBP-2 or 3AP [VVR, VVR-2 or EYER]

TYPE:

Thermal, heterogeneous, light water, submerged

USES OR

APPLICATION:

Experiments:

a) physical research

b) study of shielding properties of materials

Production of isotopes

AFFILIATION:

Institute of Atomic Energy of the Academy of Sciences USER

LOCATION:

Moscow, USSR

START-UP-DATE:

Approx. 1953 (multiplier was introduced in August 1957)

MAXIMUM

NEUTRON FLUX n/cm²/sec:

Initial: 2 x 10¹²; after reconstruction: 4 x 1013

POWER kw:

Initial: 300; after reconstruction: 3,000 (th)

FUEL:

Uranium enriched 10% U-235

MODERATOR:

H20

REPLECTOR:

H₂O

COOLANT:

H_QO

SHIELDING:

Cast iron and water 50 cm thick

EXPERIMENTAL

FACILITIES:

After reconstruction: 5 horizontal and 3 vertical channels, thermal column

REMARKS:

Thermal output 650 kg/kw U-235; the construction of a multiplier; a heterogeneous uranium-water system developed

power of 100 kw 2×10^{12} n/cm².sec

REFERENCES:

[45], p. 321, 331-336; [49]; [60], p. 27, 59, 111; [71]; [79]; [81], p. 44; [98]

BPF [BRF]

TYPE:

Thermal, heterogeneous, beryllium

USES OR

APPLICATION:

Research:

calculations of physical parameters for a reactor with

beryllium moderator

AFFILIATION:

Atomic Power Station of the Academy of Sciences USSR

LOCATION:

Obninsk, USSR

START-UP-DATE:

April 1954

MAXIMUM
NEUTRON FLUX
n/cm²/sec:

POWER kw:

Zero (th)

FUEL:

The fuel elements are tubular, 214 g of Uz08 powder occupying the space between two thin-walled co-axial steel tubes of 13.40 x 0.2 mm and 9.0 x 0.4 mm dia. The tubes are filled

to a height of 960 mm

MODERATOR:

Metallic Be (1200 kg)

REFLECTOR:

Sides (only): 15.5 cm metallic Be (6.66 kg U-235 for

criticality)

COOLANT:

H₂O

SHIRLDING:

Concrete wall 1 m thick serves to protect personnel against

radiation.

EXPERIMENTAL

PACILITIES:

Vertical channels form a rectangular lattice with a mesh 107 x 64 mm; the central channel of each elementary cell, 107 horizontal channels, and the inner tube of the

element are used to study the effect of water on the multiplication parameters of the reactor core. 2 Cd control rods, 8.2 mm dia., 9 min long. 8 Cd safety

rods. Thermal column may be used in center.

REMARKS:

Experiments showed the possibility of construction of

beryllium power reactors with small capacity.

REFERENCES:

[67]; [69]

BBP-C [VVR-8]

TYPE:

Thermal, heterogeneous, light water, submerged

uses or

APPLICATION:

Research:

a) physical researchb) chemical research

c) biology

Production of isotopes

AFFILIATION:

Institute of Muclear Physics, Moscow State University

LOCATION:

Moscow, USSR

START-UP-DATE:

MUMIXAM

NEUTRON FLUX n/cm²/sec:

2.5 x 10¹³

POWER kw:

2,000 (th)

FUEL:

Uranium enriched 10% U-235 (60 kg)

MODERATOR:

H₂0

REFLECTOR:

H_0

COOLANT:

H₂0

SHIRLDING:

Top, 3,500 mm of water and 800 mm of cast iron; side, 800 mm of water, 200 mm of cast iron and 2,200 mm of heavy concrete

EXPERIMENTAL

PACILITIES:

52 sections of 15 uranium fuel rods:

9 horizontal channels with a diameter of 60-100 mm

10 vertical channels with diameter of 40-54 mm for experiments

3 special channels for biological research

1 graphite column for research in thermal neutrons

REMARKS:

The reactor VVR-S was designed on the basis of experience gained from the operation of the experimental enriched uranium reactor VVR. At the present time several such reactors have been manufactured and are in use in the USSR and Soviet Bloc countries. Six were built and put into operation in 1957-1959; five more are still in the production, assembly and testing stages

REFERENCES:

[45], p. 243; [63]; [79'; [80], p. 43; [81]; [97]

A gaseous UF6 reactor

TYPE:

Thermal, heterogeneous, beryllium

USES OR

APPLICATION:

Experiments:

a) to test a chain reaction using uranium hexafluoride as

a fissionable material

b) to verify the results of theoretical calculations

and physical investigations

AFFILIATION:

Institute of Atomic Energy of the Academy of Sciences, USSR

LCCATION:

START-UP-DATE:

9 August 1957

MUNIXAM

NEUTRON FLUX n/cm²/sec:

2.7 x 1010

POWER kw:

1,500 (th)

FUEL:

Uranium hexafluoride enriched 90% U-235 in aluminium channels of quadratic lattice 40 x 40 cm; a gas pressure under 1.3 atm. with total gas volume of 213 liters was

bear

MODERATOR:

Metallic Be

REFLECTOR:

Sides, graphite 500 mm; upper and lower, 600 mm; upper reflector is pierced with a system of vertical channels 12 mm in dia. through which gas is fed to the channels

of the core

COOLANT:

To maintain a high pressure of UF6 the tubes are heated by low-voltage current (30-40 v) and during the initial heating consume 35 kw. From 10-15 hours are required to heat the unit to a temperature of 80-90°C. About 4 kw will be required to maintain this temperature

SHIKLDING:

EXPERIMENTAL **FACILITIES:**

148 rectangular channels; 1 horizontal and 4 vertical

channels for control and safety rods

REMARKS:

The reactor's critical stage is reached by gradually

raising the gas pressure

REFERENCES:

[57]

Pulsed reactor

TYPE:

High-neutron flux pile

USES CR

APPLICATION:

To establish the limits of the stability of graphite impregnated with uranium, at high temperatures and under the influence of powerful, but short-lived, thermal surges; and to serve as a source of very intensive, but short, bursts of neutrons

AFFILIATION:

Laboratory of Meutron Physics of United Institute for

Muclear Research

LOCATION:

Dubna, USSR

START-UP-DATE:

Developed between 1954-1955; reached critical stage end of

1958

MAXIMUM

NEUTRON PLUX

n/cm²/sec:

10¹⁷ (during the burst)

POWER KW:

5,000 (th)

FUEL:

Aqueous solution of enriched uranium salt

MODERATOR:

REFLECTOR:

Movable reflector consists of two parts each of which is

attached to the rim of a wheel rotating at constant

speed

COOLANT:

H₀0

SHIELDING:

. .

EXPERIMENTAL FACILITIES:

REMARKS:

It is possible to construct a power plant using a design similiar to that of the pulsed research reactor if the cooling water is heated to a sufficiently high temperature while passing through the condenser. There is also the possibility of providing the condenser

with a piston so that the pulsed reactor operates as an atomic piston engine. Such an engine could operate

as a solenoid type electric generator

REFERENCES:

[145]; [146]

BBP-C [VVR-S]

TYPE:

Thermal, heterogeneous, light water, submerged

USES OR

APPLICATION:

Research:

a) physical research chemical research

c) biology

Production of isotopes

AFFILIATION:

Institute of Buclear Physics of the Academy of Sciences

Uzbekskaya SSR

LOCATION:

Kibray, 12 miles northeast of Tashkent, Uzbekskaya SSR

START-UP-DATE:

10 September 1959

MAXIMUM

NEUTRON FLUX

n/cm²/sec:

2.5 x 10¹³

POWER kw:

2,000 (th)

FUEL:

Uranium enriched 10% U-235 (60 kg)

MODERATOR:

E₂0

REFLECTOR:

E20

COOLANT:

E20

SHIELDING:

Top, 3,500 mm of water and 800 mm of cast iron; side, 800 mm of water, 200 mm of cast iron and 2,200 mm of heavy

concrete

EXPERIMENTAL

FACILITIES:

Similar to VVR-S, p. 8

REMARKS:

REFERENCES:

[26], p. 68; [46]; [49]; [51]; [59]; [92]; [931]; [112]

NPT-1000 [IRT-1000]

TYPE:

Thermal, heterogeneous, light water, submerged, swimming

pool

USES OR

APPLICATION:

Besearch:

a) nuclear physics

b) material testing in neutron and gamma-source fields

Production of isotopes

AFFILIATION:

Institute of Atomic Energy of the Academy of Sciences USSR

LOCATION:

Moscov, USSR

START-UP-DATE:

December 1957

MAXIMUM

NEUTRON PLUX

n/cm²/sec:

1.2 x 10¹³

POWER kw:

1,000 (th)

FUEL:

Uranium enriched 10% U-235

MODERATOR:

E20

REFLECTOR:

H20

COOLANT:

Eo0 with ejector

SHIRLDING:

Side, 1.8 m of heavy-aggregate concrete divided into

four zones

EXPERIMENTAL

FACILITIES:

8 horizontal channels and a thermal column; 7 vertical

channels; active zone of the reactor located in a

pool, under 6 m of water

REMARKS:

This industrially produced reactor is available to

institutions of high learning and some scientific-

research centers.

REFERENCES:

[21]; [60], p. 29, 112, 113, 143, 144

MPT-2000 [IRT-2000]

TYPE:

Thermal, heterogeneous, light water, submerged, swimming pool

USES OR

APPLICATION:

Research:

a) nuclear physicsb) molecular physicsc) radiochemistry

d) biology

Production of isotopes

APPILIATION:

Institute of Atomic Energy of the Academy of Sciences USSR

LOCATION:

Moscow, USSR

START-UP-DATE:

23 November 1957 (physically)

MAXIMUM

NEUTRON FLUX n/cm²/sec:

3.2 x 10¹³

POWER kw:

2,000 (th)

FUEL:

Uranium enriched 10% U-235 (UO2 and Mg diluent confined

in Al shell)

MODERATOR:

H20

REFLECTOR:

H20

COOLANT:

H2Q; water ejector for pumping coolant through reactor core, 540m³/hr. water temperature in reactor tank 40°C. Mex.

fuel element temperature 90°C.

SHIRLDING:

Iron-cement mixtures of three compositions are used in the

shield. The side shield, 0.5 m of water and 1.8 m of

heavy aggregate concrete

EXPERIMENTAL

FACILITIES:

9 horizontal experimental channels each 100 mm in dia.

2 horizontal experimental channels each 150 mm in dia.

1 thermal column

REMARKS:

11

REFERENCES:

[45]; p. 321, 340-352; [142]; [143]

MAME:

MPT-2000 [IRT-2000]

TYPE:

Thermal, heterogeneous, light water, submerged, swimming pool

USES OR

APPLICATION:

Research:

a) muclear spectroscopy

b) neutron physics

c) solid state physics

d) biology and medicine

Production of isotopes

AFFILIATION:

Ural Branch of the Academy of Sciences USSR

LOCATION:

Sverdlovsk, USSR

START-UP-DATE:

Installation began 1958

MAXIMUM

NEUTRON PLUX

n/cm²/sec:

 1.2×10^{13}

POWER low:

2,000 (th)

FUEL:

Uranium enriched 10% U-235

MODERATOR:

H20

REFLECTOR:

H20

COOLANT:

H₂O; water ejector for pumping coclant through reactor core, 540 m 3/hr. water temperature in reactor tank 40°C. Max.

fuel element temperature 90°C.

SHIKIDING:

Iron-cement mixtures of three compositions are used in the shield. The side shield, 0.5 m of water and 1.8 m of

heavy aggregate concrete

EXPERIMENTAL

FACILITIES:

Similar to IRT-2,000, p. 13

REMARKS:

REPERENCES:

[45], p. 352; [95 e]; [142]

MPT-2000 [IRT-2000]

TYPR:

Thermal, heterogeneous, light water, submerged, swimming pool

USES OR

APPLICATION:

Research

nuclear spectroscopy a.)

b) neutron physics

c) solid state physics

d) biology and medicine

Production of isotopes

AFFILIATION:

Institute of Physics of the Acadmey of Sciences, Gruzinskaya

LOCATION:

Mear Tbilisi, Gruzinskaya SSR

START-UP-DATE:

20 November 1959

MAXIMUM

NEUTRON FLUX

n/cm²/sec:

1.2 x 10¹³

POWER kw:

2,000 (th)

FUEL:

Uranium enriched 10% U-235

MODERATOR:

H₂O

REFLECTOR:

H20

COOLANT:

B20; water ejector for pumping coolant through reactor core, 540 m 3/hr. water temperature in reactor rank

40°C. Max fuel element temperature 90°C.

SHIELDING:

Iron-cement mixtures of three compositions are used in the shield. The side shield, 0.5 m of water and 1.8 m

of heavy aggregate concrete

EXPERIMENTAL

PACILITIES:

Similar to IRT-2,000, p. 13

REMARKS:

REFERENCES:

[26], p. 69; [45], p. 352; [93a]; [142]; [143]

NPT-2000 [IRT-2000]

TYPE:

Thermal, heterogeneous, light water, submerged, swipping pool

USES OR

APPLICATION:

Training and research technology

AFFILIATION:

Polytechnical Institute

LOCATION:

Tomsk, USSR

START-UP-DATE:

1959

MAXIMUM

NEUTRON PLUX

n/cm²/sec:

1.2 x 10¹³

POWER kw:

2,000 (th)

FUKL:

Uranium enriched 10% U-235

MODERATOR:

E20

REFLECTOR:

H20

COOLANT:

H2O; water ejector for pumping coolant through reactor core, 540 m 3/hr. water temperature in reactor rank 40°C. Max.

m

fuel element temperature 90°C.

SHIELDING:

Iron-cement mixtures of three compositions are used in the shield. The side shield, 0.5 m of water and 1.8 m of heavy aggregate conciste

EXPERIMENTAL

PACILITIES:

Similar to IRT-2,000, p. 13

REMARKS:

REFERENCES:

[45], p. 352; [142]

NPT-2000 [137-2000]

TYPE:

Thermal, beterogeneous, light water, submerged, swimming pool

USES OR

APPLICATION:

Research:

- a) nuclear spectroscopy
- b) neutros physics
- e) selid state physics

c) biology and medicine Production of isotopes

APPILIATION:

The Academy of Sciences, Belorusakaya SSR

LOCATION:

Melvys Dubny, mear Minsk, Belorusskaya SSR

START-UP-DATE:

Under construction since February 1959

HALLHUH

NEUTRON FLUX

n/cm²/sec:

 1.2×10^{13}

POWER kw:

2,000 (th)

FUKL:

Uranium enriched 105 U-235

MODERATOR:

H₂0

REFLECTOR:

SHIKLDING:

H₀0

COOLANT:

160; water ejector for pumping coolsut through reactor core, 540 m 3/h4. water temperature in reactor rank 40°C. Max. fuel element temperature 90°C.

Iron-coment mixtures of three compositions are used in the shield. The side shield, 0.5 m of water and 1.8 m of heavy aggregate concrete

EXPERIMENTAL FACILITIES:

REMARKS:

Similar to IRT-2,000. However, there is disagreement in the information found in several sources: some indicate that the reactor is being constructed in Malyye Dubny as an IRT-1,000; other sources indicate that it is being constructed as an IRT-2,000. The latest available information would seem to confirm the IRT-2,000 description and it has been accepted in compiling this survey

REFERENCES:

[116]; [93=]

NPT-2000 [IRT-2000]

TYPE:

Thermal, heterogeneous, light water, submerged, swimming

USES OR

APPLICATION:

Research:

a) nuclear spectroscopy

b) neutron physics

c) solid state physics

d) biology and medicine Production of isotopes

AFFILIATION:

Institute of Physics of the Academy of Sciences, Latviyskaya

883

LOCATION:

Salaspils, near Riga, Latviyskaya SSR

START-UP-DATE:

Construction started in first half of 1959; planned comple-

tion in 1960

MAXIMUM

NEUTRON FLUX

 1.2×10^{13}

POWER kw:

2,000 (th)

FUEL:

Uranium enriched 10% U-235

NODERATOR:

H20

REFLECTOR:

H₂0

COOLANT:

H₂0; water ejector for pumping coolant through reactor core, 540 m 3/hr. water temperature in reactor tank

40°C. Max. fuel element temperature in reactor tank with capacity of 100,000 cubic meters of air per hour extracts heat from water which cools a reactor.

SHIRLDING:

Side, 2 m heavy-aggregate concrete and 6 m water (top)

EXPERIMENTAL

FACILITIES:

Similar to IRT-2000, p. 13

REMARKS:

The reactor will serve as a research center for Academy of Sciences, Latvian State University, Riga Politechnical

Institute, and for scientists from Estonia and Lithmania

REFERENCES:

[76]; [93n]

BP-1 [BR-1]

TYPE:

Fast, heterogeneous

USES OR

APPLICATION:

Experiments:

 a) investigations at different neutron energies inside the core and the reflector;

b) study properties of systems with fast neutrons;

c) check the theory of fast reactors

AFFILIATION:

Institute of Physics of the Atomic Energy Utilization Board

LOCATION:

Obninsk, USSR

START-UP-DATE:

April 1955

MUNIXAM

NEUTRON FLUX

n/cm²/sec:

0.05 to 100 w max (th)

FURL:

Plutonium rods 10 mm dia. enclosed in sealed stainless steel cans and rods from depleted uranium, 10.8 dia. are placed

in the core

MODERATOR:

HoO at a pressure of 100 atms

REFLECTOR:

Detachable cylindrical reflector (shield) 700 mm in dis. and height. Two types of blanket were used: 1 consisted of solid blocks of depleted uranium; the other, of copper

COOLANT:

SHIRLDING:

No biological shield; reactor mounted on special metal platform 2.5 m from floor in center of reactor hall with 1 m thick walls which serve as biological shield

EXPERIMENTAL FACILITIES:

REMARKS:

No special protection is provided; the reactor is installed in a separate building. Other laboratories and rooms for preparing experiments are located in this building. Specific features of the reactor:

a) Multiple channels are available

b) Practically negligible activation of material occurs in the core

c) Biological shield, usually attached to the apparatus, is not provided

d) A heat-transfer fluid is not provided

These features provide easy access into the reactor and also make it possible to easily replace any components of the core

REFERENCES:

[79]; [83], p. 3-12; [85], p. 348-350

BP-2 [BR-2]

TYPE:

Fast, thermal, heterogeneous

USES OR

APPLICATION

Experiments:

a) material testing b) fission process

c) work with liquid-metal heat-transfer agents

AFFILIATION:

Physics Institute of the Atomic Energy Utilization Board

LOCATION:

USSR

START-UP-DATE:

February 1956

MUNIXAM

NEUTRON PLUX n/cm²/sec:

1014

POWER kw:

120 kw to 200 kw (th)

FUEL:

Pu rods, 10 mm dia. 130 mm long enclosed in stainless steel tubes of 0.3 mm walls; 108 Pu and U (depleted) rods

MODERATOR:

REPLECTOR:

Two parts:

a) stationary, outer dia., 700 mm; height, 700 mm; U-rod

dia., 35 mm; all in stainless steel cans b) inner moving parts, Ri-Cu alloy; aircooled

COOLANT:

SHIKLDING:

600 mm of water, 400 mm of cast iron, and 1,200 mm of heavy

concrete containing limonite

EXPERIMENTAL

PACILITIES:

1 vertical central channel in the center of the core

2 channels in the side reflector

3 horizontal channels and themal column of graphite

REMARKS:

BR-2, one of the most advanced and convenient devices for carrying out experiments on effects of radiation on proposed reactor materials. After successfully carrying program, the BR-2 was dismalted in 1957 and used to build BR-5

REFERENCES:

[60], p. 44, 97; [83], p. 13-15; [84]; [85], p. 350-353

BP-3 [BR-3]

TYPE:

Fast, combined with thermal; heterogeneous

6

USES OR

APPLICATION:

Study the possibilities of fast-thermal system type reactors

AFFILIATION:

Institute of Physics of the Atomic Energy Utilization

Board

LOCATION:

USSR

START-UP-DATE:

Middle of 1957

MUMIXAM

NEUTRON PLUX

n/cm²/sec:

POWER kw:

Zero (th)

FUEL:

Lattice consists of cylindrical blocks of natural uranium

35 mm dia. encased in Al cans.

MODERATOR:

H20 (in inner part)

REFLECTOR:

COOLANT:

SHIRLDING:

EXPERIMENTAL

PACILITIES:

REMARKS:

The uranium-water lattice was built up of cylindrical blocks of natural uranium 35 mm in dia. encased in

aluminium cans. Around the lattice is a 15 cm layer

of water

REFERENCES:

[79]; [83], p. 12-13

NAME: EP-4 [ER-4]

TYPE:

USES OR APPLICATION:

AFFILIATION:

LOCATION:

START-UP-DATE:

MAXIMUM NEUTRON FLUX n/cm²/sec:

POWER kw:

FUEL:

MODERATOR:

REFLECTOR:

COOLANT:

SHIRLDING:

EXPERIMENTAL FACILITIES:

REMARKS:

Specifications are not available

REFERENCES: [79], p. 407

BP-5 [BR-5]

TYPE:

Fast, heterogeneous

USES OR

APPLICATION:

Experiments:

a) testing fuel and shield elements for the reactor EM-50
b) study of nuclear properties of matter in general and
of radioactive sodium as heat-transfer agent in
particular

c) nuclear-and material-testing in intensive, fast neutron fluxes

AFFILIATION:

LOCATION:

Obninsk, USSR

START-UP-DATE:

July 1958; reached critical stage 21 July 1959

MAXIMUM
MEUTRON FLUX
n/cm²/sec:

1015

POWER kw:

5,000 (th)

FUEL:

Steel tube, filled with briquettes of sintered plutonium oxide: outside dia. of the tube is 5 mm, the wall thickness is p.4 mm, and the length of the active part is 280 mm; hellium at 1 atm. is seeled in the fuel tube with welded plugs to improve thermal contact

MODERATOR:

He max. 500°C; secondary He-Max

REFLECTOR:

Mickel and small amount of urenium in inner part

COOLANT:

He cooled downward flow, 450°C outlet temperature; 2 He-HeK heat exchangers

.

SHIRLDING:

Side is the same as in the BR-2 reactor; upper is of boron carbite (80 cm), rotating steel plugs (120 cm); bottom, 20 cm water and 40 cm iron layer

EXPERIMENTAL PACILITIES:

Experimental loop, 4 channels and thermal column

REMARKS:

Reported to be the most powerful operating reactor of its kind, the ER-5 was constructed on the spot of the dismantled ER-2 reactor using some equipment of the latter; a model of the ER-5 was exhibited in New York in 1959. One feature is the easy access to its individual fuel subassemblies.

REFERENCES:

[63]; [79]; [85]; [138], p. 11

BBP-N [VVR-M]

TYPE:

Thermal, heterogeneous, light vater, submerged

USES OR

APPLICATION:

Physical research and reactor engineering

Production of high specific activity isotopes

Study of neutron and gamma-ray effects on matter and

nuclear spectroscopy

AFFILIATION:

Physico-Technical Institute of the Academy of Sciences USSR

LOCATION:

Leningrad, USSR

START-UP-DATE:

31 Décember 1959

MAXIMUM

NEUTRON FLUX

n/cm²/sec:

1.1 x 1014

POWER kw:

10,000 (th)

FUEL

Uranium enriched 20% U-255 (braced metal-ceremic tubes of UO2+Al in the shape of an axially-disposed hexagonal

tube)

MODERATOR:

E20

REFLECTOR:

Cylindrical; beryllium with internal hexagonal cavity; top,

water 3.5 m

COOLANT:

H20 (max 32 to 45°C)

SHIRLDING:

Top, 350 cm of water and 80 cm of pig iron; side, 65 cm of

water, 20 cm of pig iron, and 250 cm of cement

EXPERIMENTAL

FACILITIES:

9 horizontal channels for letting neutron beams out into

the experimental hall, and ll vertical channels for

irradiating samples

REMARKS:

REPERENCES:

[45], p. 322, 352-357; [82]; [951]

BBP-M [VVR-M]

TYPE:

Thermal, heterogeneous, light-water, submerged

USES OR

APPLICATION:

Research:

physics; a)

b) radiation chemistry; agricultural biology; c)

d) physiology; microbiology; e)

f) radiation biology Production of short-lived isotopes

APPILIATION:

Institute of Physics of the Academy of Sciences Ukrainskaya SSR

LOCATION:

Kiyev, Ukrainskaya 88R

START-UP-DATE: 12 February 1960

MAXIMUM

NEUTRON FLUX

n/cm²/sec:

1.1 x 1014

POWER kw:

10,000 (th)

FURL:

Uranium enriched 20% U-235 (braced metal-ceremic tubes of UO2+Al in the shape of an axially-disposed hexagonal tube)

268 fuel elements

MODERATOR:

B20

REFLECTOR:

Cylindrical beryllium with internal hexagonal cavity

COOLANT:

B₂0

SHIKLDING:

Top, 350 cm of water and 80 cm of pig iron; side, 65 cm of water, 20 cm of pig iron, and 230 cm of cement

EXPERIMENTAL

FACILITIES:

9 horizontal channels for letting neutron beams cut into the experimental hall, and ll vertical channels for irradiating samples

For investigation of resonance scattering of allow neutrons by the transit time method a mechanical selector and 1021channel temporary analyzer were added. A special wideangle gamma-spectrometer with an 80° capture angle was constructed for investigation of the capture of game-ray spectra

REMARKS:

REFERENCES:

[26], p. 69; [54]; [104]; [110]; [115]; [25]; [135]

CM [8M]

TYPE:

Intermediate, heterogeneous, light water

USES OR

APPLICATION:

Research in structure and behavior of materials in field

of radiation;

Production of new trans-uranium elements and radioactive

isotopes

AFFILIATION:

LOCATION:

UBSR

START-UP-DATS:

Under construction

MAXIMUM NEUTRON PLUX

n/cm²/sec:

2 x 10¹⁵

POWER kw:

50,000 (th)

FUEL:

Mixture of polyethylene and uranium oxide enriched 90% U-235 (54 plates per block 0.5 mm thick, 1.65 mm thick,

1.65 mm spacing between plates)

MODERATOR:

H20

REFLECTOR:

BeO (core and reflector are encased in stainless-steel pressure vessel designed for an internal pressure of 50 kg/cm2 chielded from reactor steel by water-cooled

screens

COOLANT:

H20

SHIRLDING:

Steel water-cooled mesh

EXPERIMENTAL

FACILITIES:

1 experimental channel with an outer dia. of 80 mm enters the 140 x 140 x 250 mm3 water cavity which is provided in the center of the core; 5 horizontal channels (bundle 15 vertical channels with independent cooling system

REMARKS:

REFERENCES:

[35]; [36]; [138], p. 11

BBP-II [VVR-IS]

TYPE:

Thermal, heterogeneous, light water, submerged

USES OR

APPLICATION:

Radiochemical research:

physicochemical processes due to irradiation

b) activation analysis

c) radiochamical processes on a semi-production scale

d) radiation effect on solid and semi-conductors

study of the physicochemical properties of coolants f) study of chemical reactions with nuclear irradiation

AFFILIATION:

Institute of Ruclear Physics of the Academy of Sciences Kazakhakaya SSR

LOCATION:

Alma-Ata, Kazakhakaya SSR

START-UP-DATE:

Under construction

MAXIMUM NEUTRON PLUX

n/cm²/sec:

1 x 1014

POWER kw:

10,000 (min.) to 20,000 (th)

FUEL:

Uranium enriched 20% U-235 (braced metal ceremic tubes of 102+11)

MODERATOR:

E0

REFLECTOR:

Metal beryllium and HoO

COOLANT:

HoO flow from top downward, 1,040 m 3/hr, mean velocity m core 2.3 m/sec, temperature rose 8.3°C mean water temperature 3.15°C

SHIRLDING:

Top, 350 cm of water and 800 mm of pig iron; side, 800 mm of water and 200 mm of pig-iron with 2,400 mm concrete layer; bottom, 1,100 mm of water

EXPERIMENTAL FACILITIES:

- 1) for periodical passage of liquid and gaseous media into the intensive reactor radiation field.
- to let out radiation beams from core and employ them
- for long-time irradiation of materials
- as auxiliary radiation source
- 5) for additional experiments
- 12 loops, 10 herizontal and 20 vertical channels, and a graphite thermal column for experimental purposes

REMARKS:

REFERENCES:

[45], p. 322, 357-367; [93a]; [93h]

ABIIC or ABC [AEPS or AES]

TYPE:

Thermal, heterogeneous, graphite, pressurized water

USES OR

APPLICATION:

Atomic power station:

a) to accumulate technical and economic experience with an atomic power plant

b) to serve as a base for traning personnel

APPILIATION:

Power Station of the Academy of Sciences, USSR

LOCATION:

Obninsk, 75 miles from Moscow, near Maloyaroslavets, USSR

START-UP-DATE:

Completed 9 May 1954; 27 June 1954 was generating electricity

MAXIMUM NEUTRON FLUX n/cm²/sec:

5 x 10¹³ (average)

POWER kw:

30,000 (th) 5,000 (el)

FUEL:

Enriched uranium 5% U-235

MODERATOR:

Graphite and water (later simultaneously serves as the coolant)

REFLECTOR:

Side: Graphite, 80 cm; end, 60 cm

COOLANT:

B₀0 (100 atm.)

SHIRLDING:

Top, steel and cast iron; side; 100 cm of water and 300 cm

of concrete

EXPERIMENTAL

PACILITIES:

Several experimental channels, a thermal commun, and neutron beam holes provide facilities for carrying out investigations with neutrons and the production of radioactive

isotopes

REMARKS:

First industrial atomic power station in the world

REFERENCES:

[17]; [18]; [19]; [30]; [32]; [4/], p. 1-3; [40], p. 22-39; [44]; [46]; [65], p. 3-13; [68], [75]; [77]; [87]; [88], p. 134-144, 147-153; [94], p. 18-44; [96]; [101]; [105]; [114]; [117]; [119]; [124]; [131]; [134], p. 107-114

Beloyarsk Atomic Power Station imeni I.V. Kurchatov

TYPE:

Thermal, heterogeneous, graphite, superheated high-pressure

steam

USES OR

APPLICATION:

Prototype of atomic power station with high output

AFFILIATION:

LOCATION:

Beloyarsk [Pyshma river canyon of Sverdlovskaya oblest']

USSR

START-UP-DATE:

Under construction; fir 200,000 kw section will deliver

industrial current by 1961

MAXIMUM

NEUTRON FLUX

n/cm²/sec:

POWER kw:

1,540,000 (th) 400,000 (el)

FUEL:

Enriched uranium 1.3% U-235 (90 t); cladding undetermined

MODERATOR:

Graphite, water and steam

REFLECTOR:

Graphite (80 cm)

COOLANT:

H2O and steam [160 atms.) by max. 309°C

SHIELDING:

Concrete and water 1 m thick, cooled by coil

EXPERIMENTAL

PACILITIES:

REMARKS:

Secondary steam with 110 atm., is conducted into the channels where it is superheated to 510°C with 90 atm. absolute pressure then conducted to the turbine; the

station will have 4 reactors, each 285,000 kw (th),

1,000,000 kw (el)

REFERENCES:

[8]; p. 10-13; [28]; [29]; [44]; [45]; [47]; [50]; [52]; [105]; [114]; [138], p. 2; [139], p. 91-92; [140], p. 6-9

Siberian

TYPE:

Thermal, heterogeneous, graphite, water

USES OR

APPLICATION:

Atomic power station with large capacity, designed to

produce both plutonium and power

AFFILIATION:

LOCATION:

Troitsk, Siberia, USSR

START-UP-DATE:

7 September 1958

MAXIMUM

NEUTRON PLUX

n/cm²/sec:

POWER kw:

600,000 (el)

FUKL:

Matural uranium (200 t)

MODERATOR:

Graphite

REFLECTOR:

Graphite:

COOLANT:

Pressurized water cooling (mex. 220°C). Secondary

circuit produced steam at 185°C

SHIRLDING:

EXPERIMENTAL

PACILITIES:

REMARKS: The world's largest stonic power station; the first 100,000

kw stage has been accomplished; after completion, the

station will have 6 reactors and each reactor, three turbo-

generators

REFERENCES:

[30], p. 28-29; [44]; [129]; [141]

TYPE:

Thermal, heterogeneous, graphite, sodium

USES OR

APPLICATION:

Experimental power station

AFFILIATION:

Reactor Testing Station

LOCATION:

Ulyanovsk, USSR

START-UP-DATE:

Under Construction

MAXIMUM

NEUTRON PLUX

n/cm²/sec:

POWER kw:

140,000 (th) 50,000 (el)

FUKL:

Urenium slightly enriched (1.5%) clad in stainless steel

MODERATOR:

Graphite

REFLECTOR:

COOLANT:

Sodium; inlet temperature 300°C; outlet, 560°C; 1,600 t/hr.

Second, Ha circuit

SHIKLDING:

EXPERIMENTAL

FACILITIES:

400 channels, 42 control rods

REMARKS:

Different types of fuel will be tested. Superheated steam

200 t/hr at 500°C and at a pressure of 90 atms. will be

produced

REFERENCES:

[44]; [95]; [137]

BB3P-210 [VVEE-210]

TYPE:

Thermal, heterogeneous, pressurized water

USES OR

APPLICATION:

Prototype of atomic power station with large especity

AFFILIATION:

LOCATION:

Movovorchezhakaya near Voronezh on the Don River, USER

START-UP-DATE:

Under construction; about 1960/1961

MAXIMUM NEUTRON FLUX n/cm²/sec:

POWER kw:

1,520,000 (th) 420,000 (el)

FUEL:

Uranium oxide enriched 1.5% U-235, with alloyed zirconium cladding. Both natural, 17 t of metal, and enriched uranium (23 t) used for fuel loading.

MODERATOR:

E20 under pressure of 100 ata., circulating along six circulation loops

REFLECTOR:

E₂0

COOLANT:

H₂0 (under the pressure of 100 atm. circulating along

six circulation loops

SHIRLDING:

Cylindrical tank filled with water 100 cm thick and 300 cm

of concrete

EXPERIMENTAL PACILITIES:

REMARKS:

It will have two reactors of pressurized water type, each reactor 760,000 km (thermal), 210,000 km (electrical); the ordinary water at a pressure of 100 atm. will serve as the neutron moderator. Heated to 275°C in the core of reactor, this water will produce steam at 29 atm. to drive 70,000 km turbines

REFERENCES:

[6]; [30], p. 29; [73]; [95]; [110]; [125]; [133]; [139], p. 88-91; [140]

BB3P-210 [WER-210]

TYPE:

Thermal, beterogeneous, pressurized water

USES OR

APPLICATION:

Prototype of atomic power station with large especity

AFFILIATION:

LOCATION:

Leningrad region; USSR

START-UP-DATE:

Under construction

MAXIMUM NEUTRON FLUX n/cm²/sec:

POWER kw:

760,000 (th) 420,000 (el)

FUKL:

Uranium dioxide enriched 1.5% U-235; fitted with sirconium tube claddings, Both natural 17 t of metal, and enriched uranium (23 t) used for fuel loading

MODERATOR:

H20 under pressure of 100 stm., circulating along six

circulation loops

REPLECTOR:

E₂0

COOLANT:

H20 (under pressure of 100 atm. circulating along six

circulation loops)

SHIRLDING:

Cylindrical tank filled with water 100 cm thick and 300 cm

of concrete

EXPERIMENTAL FACILITIES:

REMARKS:

It will have two reactors of pressurized water type, each reactor 760,000 kw (thermal), 210,000 kw (electrical); the ordinary water at a pressure of 100 atm. will serve as the neutron moderator. Heated to 275°C in the core of reactor, this water will produce steam at 29 atm.

to drive 70,000 kw turbines

Reperences:

[6]; [75]; [95], p. 386-387; [110]; [125]; [137]; [140], p. 9-22

Mobile

TYPE:

Thermal, heterogeneous, pressurized water

USES OR

APPLICATION:

Small experimental mobile atomic power station

AFFILIATION:

LOCATION:

Coninsk, USSR

START-UP-DATE:

Installed for testing at the end of 1958 on the grounds

of the first Atomic Power Station

MAXIMUM

NEUTRON FLUX

n/cm²/sec:

POWER kw:

2,000 (el)

FUEL:

Enriched uranium

MODERATOR:

H20

REFLECTOR:

COOLANT:

H₂0 (120 atm.) Secondary circuit provides steam at 20 atms., 280°C

SHIELDING:

EXPERIMENTAL

PACILITIES:

REMARKS:

Reactor vessel 1 m dia., 2.2. m high

REFERENCES:

[137]

TYPE:

Thermal, heterogeneous, boiling water

USES OR

APPLICATION:

Experimental atomic power station with small capacity

APPILIATION:

LOCATION:

Ulyanovsk district on the Volga River, USER

START-UP-DATE:

Under construction. Expected completion 1961

MAXIMUM

NEUTRON PLUX n/cm²/sec:

POWER kw:

50,000 (el)

FUEL:

UO2 enriched 1.5% U-235 fitted with alloyed zirconium tube cannings. 144 fuel elements of the pressurized water type

MODERATOR:

H20

REFLECTOR:

COOLANT:

H₂O and steam (29 atms.)

SHIRLDING

EXPERIMENTAL

PACILITIES:

REMARKS:

Steam pressure in the reactor 100 atms., and 30 atms. before

turbines

REFERENCES:

[95], p. 381-388 [123], p. 8

TYPE:

Thermal, homogeneous, boiling water

USES OR

APPLICATION:

Experimental storic power station with small capacity; study of coiling reactors stability and to determine

efficiency of the thorium cycle.

AFFILIATION:

LOCATION:

Ulyanovsk district on the Volga River, USSR

START-UP-DATE:

Under construction

MUNIXAM

NEUTRON PLUX

n/cm2/sec:

•

POWER kw:

Up to 35,000 (th)

FUEL:

Suspended uranium oxide in D20; Th

MODERATOR:

D20

REFLECTOR:

TELTECION!

COOLANT:

D20 (up to 50 atms.)

SHIELDING:

EXPERIMENTAL

FACILITIES:

REMARKS:

REFERENCES:

[50]; [137]; [61]

TYPE:

Thermal, homogeneous, heavy water

USES OR

APPLICATION:

Prototype of an atomic power station with large capacity

AFFILIATION:

LOCATION:

USSR

START-UP-DATE:

Preliminary example design

MAXIMUM

MEUTRON FLUX

n/cm²/sec:

 6.5×10^{13}

POWER kw:

From 1,150,000 to 2,000,000 (th)

From 280,000 to 500,000 (el)

FUEL:

Matural uranium with addition of slightly enriched uranium

(0.8 to 0.9% U-235) at a concentration of 200 kg/t of

water

MODERATOR:

D₂0

REFLECTOR:

. .

COOLANT:

D₂0

SHIRLDING:

. . .

EXPERIMENTAL

FACILITIES:

REMARKS:

Length of campaign is from 7 to 8 years during which

306 tons of natural uranium and 43 tons of 0195%

U-235 will be consumed

REFERENCES:

[22]

BH-50 [BH-50]

TYI'S:

Past breeder

USES OR

APPLICATION:

Experimental atomic power reactor

AFFILIATION:

LOCATION:

Ulyanovska oblast' on the Volga River, USSR

START-UP-DATE:

1960/1961

MAXIDAUN

NEUTRON PLUX n/cm²/sec:

0.9 x 1016 and 1.3 x 1016

POWER kw:

200,000 (th)

50,000 (el)

FUEL:

Pu (core composition: 40% of heat-transfer agent, 47% of fuel elements from PuO2, 13% structural materials)

MODERATOR:

REFLECTOR:

Depleted uranium 600 mm thick

COOLANT:

h, kr

SHIRLDING:

EXPERIMENTAL

PACILITIES:

REMARKS:

Average specific heat generation 800 kw/l core; steam

temperature 415°C; steam pressure 29 kg/sq. cm; breeding

ratio 1.9

REPERENCES:

[55]

BH-250 [BN-250]

TYPE:

Fast breeder

USES OR

APPLICATION:

Attaic power station

AFFILIATION:

LOCATION:

START-UP-DATE:

Planned; not yet decided

MAXIMUM

MEUTRON PLUX n/cm²/sec:

0.9 x 1016 1.3 x 1016

POWER kw:

250,000 (el)

FUEL:

Core composition: 44% of heat-transfer agent, 43% of fuel elements from Pu02, 13% of structural materials

MODERATOR:

REFLECTOR:

Depleted uranium 600 mm thick, 480°C max.

COOLANT:

Ha, Mak 500° max.

SHIRLDING:

EXPERIMENTAL FACILITIES:

REMARKS:

Average specific heat generation 1,000 kw/l core; breeding

ratio 1.8 to 2.0

REFERENCES:

[55]

"Lenin" atomic icebreaker

TYPE:

Thermal, beterogeneous, pressurised water

USES OR

APPLICATION:

Experimental atomic power station with middle capacity;

marine; first in the northern seaway

AFFILIATION:

LOCATION:

Leningred, USBR

START-UP-DATE:

Construction begun 1955; launched 15 December 1957; started on

her maiden voyage in December 1959

MAXIMUM

NEUTRON FLUX

n/cm²/sec:

POWER kw:

270,000 (th) close 10,500 hp

FUKL:

Sintered UO2 enriched 5% U-235 fitted with alloyed

zirconium tube cannings (05 kg)

MODERATOR:

Graphite

REFLECTOR:

COOLANT:

E20

SHIELDING:

. Equal volume of iron and water

RYPERIMENTAL

PACILITIES:

REMARKS:

Steam temperature 310°C; steam pressure 28 atms. Two of the water-water type reactors with which the icebreaker is equipped are in operation; the third is kept in reserve. In the secondary circuit a turbine operates on steam with pressure at 20 aims and tempera-

ture of 280 °C.

REFERENCES:

[1]; [12]; [13]; [78]; [100]; [122]

NPT-1000 [IRT-1000]

TYPE:

Thermal, heterogeneous, light water, submyged, swimming

USES OR

APPLICATION:

Research:

a) nuclear physics

b) material testing in outron and gamma-source fields

Production of isotopes

AFFILIATION:

Institute of Physics of the Bulgarian Academy of Sciences

LOCATION:

Geo Miley Section of Sofia, Bulgaria

START-UP-DATE:

Under construction

MAXIMUM

NEUTRON FLUX n/cm²/sec:

1.2 x 10¹³

POWER kw:

1,000 (th)

FUKL:

Uranium enriched 10% U-235

MODERATOR:

H₂0

REFLECTOR:

H₂O

COOLANT:

H20 with ejector

SHIKLDING:

Side, 1.8 m of heavy-aggregate concrete divided into four

zones

EXPERIMENTAL

PACILITIES:

8 horizontal channels and a thermal column; 7 vertical channels; active zone of the reactor located in a pool,

under 6 m of water

REMARKS:

This industrially produced reactor is available to

institutions of high learning and some scientific-research

centers

REFERENCES:

[95 1]; [137]; [80]

TBP-C [TVR-8]

TYPE:

Thermal, heterogeneous, heavy-water

USES OR

APPLICATION:

Research:

a) nuclear physics;

b) radiochemistry

c) biology, production of isotopes

AFFILIATION:

Institute of Muclear Physics

LOCATION:

Peking, China

START-UP-DATE:

27 September 1958

MAXIMUM

NEUTRON FLUX n/cm²/sec:

5.5 x 10¹³

POWER kw:

7,000 to 10,000 (th)

FUEL:

Uranium enriched 2% U-235 (340 kg)

MODERATOR:

D₂0 (5 t)

REFLECTOR:

Graphite

COOLANT:

B20

SHIRLDING:

Side, 2 m of special concrete and 70 cm of water in the form of a reservoir separated from the concrete by a layer of sand 7.5 cm thick

EXPERIMENTAL

FACILITIES:

9 channels for experimental work:

1 in central part 100 mm in dia., 4 in the middle of core, each 50 mm in dia. and 4 in the periphery, each 100 mm in dia.

REMARKS:

Similiar to TR, p. 2

REFERENCES:

[23]; [24]; [25]; [80], p. 44; [102]; [137]

NAME: TYPE: Homogeneous research reactor USES OR APPLICATION: Research and instruction Production of isotopes AFFILIATION: Man-K'ai Polytechnic Institute LOCATION: Tientsin, China START-UP-DATE: 1959 MAXIMUM NEUTRON FLUX n/cm²/sec: 4.5 x 106 (outside the reactor) POWER kw: 3 w (th) FUEL: MODERATOR: REFLECTOR: COOLANT: SHIRLDING EXPERIMENTAL FACILITIES:

students of the Institute

REFERENCES: [95 8]

REMARKS:

Reactor was built and put into operation by teachers and

BBP-C [VVR-8]

TYPE:

Thermal, heterogeneous, light water, submerged

USES OR

APPLICATION:

Research:

a) physical research
b) chemical research

c) biology

Production of isotopes

AFFILIATION:

Institute of Muclear Physics

LOCATION:

Rezi near Prague, Czechoslovakia

START-UP-DATE:

24 September 1957

NUNIXAN

NEUTRON FLUX

n/cm2/sec:

 2.5×10^{13}

POWER kw:

2,000 (th)

FUKL:

Uranium enriched 10% U-235 (60 kg)

MODERATOR:

H20

REFLECTOR:

H20

COOLANT:

H20

SHIRLDING:

Top, 3,500 mm of water and 800 mm of cast iron; side, 800 mm of water, 200 mm of cast iron and 2,200 mm of heavy

concrete

EXPERIMENTAL

PACILITIES:

Similar to VVR-S, p. 8

REMARKS:

The research reactor of the Czechoslovak Academy of Sciences was delivered by the Soviet Union on the basis of the bilateral agreement of April 1955, between the two states.

REFERENCES:

[50]; [60], p. 59; [91]; [93 e]; [130]

HAME:

KB-150

TYPE:

Thermal, heterogeneous, heavy water

USES OR

APPLICATION:

Prototype of an atomic power station with large especity

AFFILIATION:

LOCATION:

Bohunice (10 km west of Trnava), Slovakia

START-UP-DATE:

1960 (under construction)

MAXIMUM

NEUTRON FLUX n/cm²/sec:

POWER kw:

590,000 (th) 150,000 (cl)

FUEL:

Matural uranium

MODERATOR:

D20

REFLECTOR:

COOLANT:

CO2 at 60 atms. inlet temperature 125°C, outlet temperature

SHIELDING:

EXPERIMENTAL

FACILITIES:

REMARKS:

First atomic power station in Czechoslovakia; 3 turbines,

each 50,000 kw; Czechoslovakian plants are entrusted of manufacturing equipment and the carrying out the constructional work, Soviet Union will make available

the services of experts on specific matters

REFERENCES:

[4]; [5]; [13]; [56]; [58]; [118]; [120]; [121]

BBP-C [VVR-8]

TYPE:

Thermal, heterogeneous, light water, submerged

USES OR

APPLICATION:

Research:

a) physical research
b) chemical research

c) biology

Production of isotopes

AFFILIATION:

Central Institute for Inclear Physics

LOCATION:

Rossendorf near Dresden, GDR

START-UP-DATE:

16 December 1957

MAXIMUM

NEUTRON FLUX

n/cm²/sec:

2.5 x 1013

POWER kw:

2,000 (th)

FUKL:

Uranium enriched 10% U-235 (60 kg)

MODERATOR:

H₂0

REFLECTOR:

H₂O

COOLANT:

H_0

SHIRLDING:

Top, 3,500 mm of water and 800 mm of east iron; side, 800 mm of water, 200 mm of east iron and 2,200 mm of heavy concrete

EXPERIMENTAL

FACILITIES:

Similar to VVR-8, p. 8

REMARKS:

REFERENCES:

[39]; [60], p. 59; [72]; [80], p. 14

BB3P-70 [VVER-70]

TYPE:

Thermal, heterogeneous, pressurized water

USES OR

APPLICATION:

Experimental atomic power station; prototype of middle

capacity

AFFILIATION:

Techno-Scientific Office for the Construction of Reactors

LOCATION:

Mear Rheinsberg, north of Berlin, GDR

START-UP-DATE:

About 1961; construction started in 1959

MAXIMUM

NEUTRON FLUX n/cm²/sec:

POWER kw:

265,000 (th) 70,000 (el)

FUEL:

UO2 enriched 1.4 - 1.5 - to 1.7% U-235, fitted with alloyed

zirconium tube cannings

MODERATOR:

H20

REFLECTOR:

H20

COOLANT:

HoO in the primary circuit will be subjected to a pressure

of 100 atms. The reactor intake temperature will be

250°C and reactor outlet temperature 267°C

SHIKLDING:

EXPERIMENTAL

FACILITIES:

REMARKS:

The construction project for the power plant was worked out

in the GDR; reactor section was designed in the Soviet

Union with the cooperation of German experts.

REFERENCES:

[126]; [1260]

BBP-C [VVR-8]

TYPE:

Thermal, heterogeneous, light water, submerged

USES OR

APPLICATION:

Research:

a) physical research b) chemical research
c) biology

Production of isotopes

AFFILIATION:

LOCATION:

Abu Za'bal, Egypt

START-UP-DATE:

MAXIMUM

NEUTRON FLUX

n/cm²/sec:

2.5 x 10¹³

POWER kw:

2,000 (th)

FUEL:

Uranium enriched 10% U-235 (60kg)

MODERATOR:

H20

REFLECTOR:

E20

COOLANT:

H20

SHIRLDING:

Top, 3,500 mm of water and 800 mm of cast iron; side, 800 mm of water, 200 mm of cast iron and 2,200 mm of heavy

concrete

EXPERIMENTAL

FACILITIES:

Similar to VVR-S, p. 8

REMARKS:

The research reactor of the Czechoslovak Academy of Sciences was delivered by the Soviet Union on the basis of the

bilateral agreement of April 1955, between the two states

REFERENCES:

[137]; [936]

BBP-C [VVR-S]

TYPE:

Thermal, heterogeneous, light water, submerged

USES OR

APPLICATION:

Research:

physical research chemical research

c) biology

Production of isotopes

AFFILIATION:

Central Research Institute of Physics of the Academy of

Sciences

LOCATION:

Csilleberc Hilltop, Hungary

START-UP-DATE:

29 March 1959

MAXIMUM

NEUTRON FLUX

n/cm²/sec:

2.5 x 1013

POWER kw:

2,000 (th)

FUEL:

Uranium enriched 10% U-235 (60 kg); 51 sections containing

16 fuel elements

MODERATOR:

E₀0

REFIECTOR:

H₂O

COOLANT:

E₂0

SHIRLDING:

Top, 3,500 mm of water and 800 mm of cast iron; side, 800 mm

of water, 200 mm of cast iron and 2,200 mm of heavy

concrete

EXPERIMENTAL

PACILITIES:

6 horizontal experimental channels

8 vertical experimental channels

1 horizontal channel opening into core, embedded on a graphite

1 thermal column with 4 vertical experimental channels

3 vertical experimental channels for biological research

REMARKS:

Similar to VVR-S, p. 8

REFERENCES:

[60]; [80], p. 44 [93 i]; [103]; [128]; [132]

Hungarian subcritical reactor

TYPE:

USES OR

APPLICATION:

Experiments in reactor physics which will give Hungarian experts the necessary knowledge for building a small-

output power reactor of domestic design

Production of isotopes

Investigation of neutron multiplier systems

AFFILIATION:

Central Physics Research Institute

LOCATION:

Budspest, Rungary

START-UP-DATE:

5 November 1959

MAXIMUM NEUTRON FLUX

n/cm²/sec:

POWER kw:

FUKL:

Reserve fuels from the experimental reactor

MODERATOR:

REFLECTOR:

COOLANT:

SHIRLDING:

EXPERIMENTAL FACILITIES:

REMARKS:

REFERENCES:

[89]; [90]; [127]

TYPE:

Thermal, heterogeneous, light water, submerged, swimming pool

USES OR

APPLICATION:

Research:

a) nuclear physics

b) material testing in neutron and gamma-source fields Production of isotopes

AFFILIATION:

LOCATION:

Korea

START-UP-DATE:

MAXIMUM

NEUTRON FLUX n/cm²/sec:

 1.2×1013

POWER kw:

1,000 (th)

FUEL:

Uranium enriched 10% U-235.

MODERATOR:

H20

REFLECTOR:

H₀0

COOLANT:

H20 with ejector

SHIRLDING:

Side, 1.8 m of heavy-aggregate concrete divided into four

zones

EXPERIMENTAL

PACILITIES:

8 horizontal channels and a thermal column; 7 vertical

channels; active zone of the reactor located in a pool,

under 6 m of water

REMARKS:

This industrially produced reactor is available to insti-

tutions of high learning and some scientific-research

centers

REFERENCES:

[137]

EVA

TYPE:

Thermal, heterogeneous, light water, submerged

USES OR

APPLICATION:

Research:

a) physical research chemical research b)

e) piology

Production of isotopes

AFFILIATION:

Center of Muclear Research

LOCATION:

Swierk near Warsaw, Poland

START-UP-DATE:

31 May 1958

MAXIMUM

HEUTRON FLUX n/cm²/sec:

2.5 x 1013

PCWER kw:

2,000 (th)

FUEL:

•

Uranium enriched 10% U-235 (60 kg)

MODERATOR:

L₀

REFLECTOR:

H20

COOLANT:

L_0

SHIRLDING:

Top, 3,500 mm of water and 800 mm of cast iron; side, 800 mm of water, 200 mm of cast iron and 2,200 mm of heavy concrete

EXPERIMENTAL PACILITIES:

Similar to VVR-8, p. 5

REMARKS:

REPERENCES:

[2]; [3]; [3a]; [9]; [15]; [16]; [77]; [63]; [80], p. 44; [99]; [136]

Second Polish Research Reactor

TYPE:

High-flux

USES OR

APPLICATION:

AFFILIATION:

LOCATION:

Poland

START-UP-DATE:

MAXIMUM
NEUTRON FLUX
n/cm²/sec:

POWER kw:

FUEL:

Fuel elements of the type used in the Soviet RFT reactor for physical and technical research with 20 or 90% enriched uranium; this element consists of a number of concentrated ceramic tubes (UO2+Al), aluminium clad and water cooled

MODERATOR:

Graphite

REFLECTOR:

COOLANT:

Gas

SHIELDING:

EXPERIMENTAL FACILITIES:

REMARKS:

The experiments took place on water moderated and cooled reactors, heavy water moderated reactors and graphite moderated reactors (Pilot, Perun and water-cooled reactors) between 1958-1960. At the present stage the preliminary design of the critical assembly has been completed

REFERENCES:

[26a]; [64]; [99]

Graphite-moderated exponential assembly

TYPE:

USES OR

APPLICATION:

Constitutes a mock-up of the Second Polish high-flux reactor

AFFILIATION:

Experimental Reactor Physics Group of the Reactor Detectors Group of the Institute of Muclear Research of the Polish

Academy of Sciences

LOCATION:

Swierk, near Warsaw, Poland

START-UP-DATE:

1958-1960

MAXIMUM

NEUTRON PLUX

n/cm²/sec:

In graphite 106;

in uranium 0.7×10^6

POWER kw:

FUKL:

20% and 90% enriched uranium, in tubular foel-elements;

critical mass (calculated) about 4 kg U-235; maximum fuel

element loading, 30 units

MODERATOR:

Water, 70%; graphite, 30%

REFLECTOR:

80 cm of graphite

COOLANT:

Water

SHIKLDING:

30 cm of concrete

EXPERIMENTAL

FACILITIES:

PEMARKS:

[26a]

REFERENCES:

BBP-C [VVR-8]

TYPE:

Thermal, heterogeneous, light water, submerged

USES OR APPLICATION:

To determine:

a) what information may be obtained on the characteristics of the reactor, using the measuring equipment normally provided with the reactor;

b) to what extent it is possible to forecast the dynamic behavior of the reactor by using a simple system loop;

c) if it is necessary to take account of the existence of two temperature coefficients, and when;

d) the predetermination, to a first approximation, of the transitory conditions brought about by a sudden modification in the relativity.

APPILIATION:

Institute of Atomic Physics of the Rumanian Academy of Sciences

LOCATION:

Bucharest, Rumania

START-UP-DATE:

31 July 1957

NEUTRON PLUX

n/cm²/sec:

2.5 x 1013

POWER kw:

2,000 (th)

FURL:

Uranium enriched 10% U-235 (60 kg)

MODERATOR:

H₀0

REFLECTOR:

E₂0

COOLANT:

H₀0

SHIRLDING:

Top, 3,500 mm of water and 800 mm of cast iron; side, 800 mm of water, 200 mm of cast iron and 2,200 mm of heavy concrete

EXPERIMENTAL FACILITIES:

Similar to VVR-S, p. 8

REMARKS:

REFERENCES:

[60], p. 59; [80], p. 44; [111]; [113]

RB, Bare critical assembly

TYPE:

Thermal, heterogeneous, heavy water

USES OR

APPLICATION:

Provide experience in:

1. carrying out critical experiments

operational experience with nuclear reactors
 high accurate critical conditions for heavy

yater-natural uranium lattices

AFFILIATION:

Boris Kidric Institute of Muclear Sciences'

LOCATION:

Vinca, near Beograd, Togoslavia

START-UP-DATE:

29 April 1958

MUMIXAM

NEUTRON FLUX

n/cm²/sec:

POWER low:

Zero (th)

FUEL:

Natural uranium in 200 alunium covered rods

MODERATOR:

Heavy water

REFLECTOR:

Completely non-reflected by placing reactor core on a

platform 4 m above floor

COOLANT:

D20

SHIRLDING:

He, D20

EXPERIMENTAL

FACILITIES:

The reactor is controlled by D₂O level and 2 Cd safety

rods

REMARKS:

An accident occurred on 15 October 1958. Introduction of RaBe source together with elevation of D20 level, led to excessive neutron and gamma radiation; 6

led to excessive neutron and gamma radiation; o persons affected, 1 death, 4 received 600-1000 rem;

1,400 rem

REPERENCES:

[38]; [931]; [106]; [107]; [108]; [109]

TBP-C [TVR-S]

TYPE:

Thermal, heterogeneous, heavy-water

USES OR

APPLICATION:

Research:

a) nuclear physics

) radiochemistry

c) biclogy, production of isotopes

AFFILIATION:

Boris Kidric Institute of Muclear Sciences

LOCATION:

Vinca, near Reograd, Yugoslavia

START-UP-DATE:

1958

MAXIMUM

NEUTRON FLUX n/cm²/sec:

5.5 x 10¹³

POWER kw:

7,000 to 10,000 (th)

FURL:

Uranium enriched 2% U-255

MODERATOR:

D₂0 (5 t)

REFLECTOR:

Grephite

COOLANT:

 D_20

SHIRLDING:

Side, 2 m of special concrete and 70 cm of water in the form of a reservoir separated from the concrete by a

layer of sand 7.5 cm thick

EXPERIMENTAL

PACILITIES:

9 channels for experimental work:

1 in central part 100 mm in dia., 4 in the middle of core, each 50 mm in dia. and 4 in the periphery, each

100 m in dia.

REMARKS:

Similar to TR, p. 2

REFERENCES:

[63f]; [80], p. 44; [93k]; [137]

BIBLIOGRAPHIC REFERENCES

- [1] ALEKSANDROV, A.P., I.I. AFRIKANTOV, A.I. BRANDAUS, G.A. GLADKOV, B.V. GNESIN, V.I. NEGANOV, and N.S. KHLOPKIN. The atomic ice-breaker "Lenin". IN: International Conference on the Peaceful Uses of Atomic Energy. 2d, Geneva, 1958. Proceedings, Geneva, United Nations, P/2140, v. 8, 1958, 204-219.

 JK1977.A2 A/Conf. 15/1, v. 8
- [2] ALEKSANDROWICZ, J. One year's utilization of the VVR-S-reactor in Poland. Nukleonika, v. 5, no. 1-2, 1960, 1-21.

 TK9001.N86, v. 3
- [3] ALKKSAMDROWICZ, J. Poland's first nuclear reactor. Nukleonika, v. 3, no. 1, 1958, 27-41. TK9001.N86, v. 3
- [3a] ALKKSANDROWICZ, J. Second year of VVR-S-reactor exploitation in Poland. Nukleonika, v. 5, no. 7-8, 1960, 385-415.

 TK9001.N86, v. 5
- [4] ALIKHANOV, A.I., V.V. VLADIMIRSKIY, S.YA. NIKITIN, A.D. GALAIN, S.A. GAVRILOV, N.A. BURGOV. A heavy-water research reactor. IN: International Conference on the Peaceful Uses of Atomic Energy. 1st, Geneva, 1955. Proceedings, Geneva, United Nations, P/623, v. 2, 1956, 331-336.

 JX1977.A2 A/Conf. 8/2, v. 2
- [5] ALIKHANOV, A.I., V.V. VLADIMIRSKIY, P.A. PETROV, and P.I. KHRISTKNKO. Gas-cooled heavy-water power reactor. Atomnaya energiya, no. 1, 1956, 5-9. QC770.A84 1956
- [5a] ALIKHANOV, A.I., V.K. ZAVOYSKIY, R.L. SERDYUK, B.V. ERSHLER, and L.YA. SUVOROV. A boiling homogeneous nuclear reactor for power. IN: International Conference on the Peaceful Uses of Atomic Energy. 1st, Geneva, 1955. Proceedings, Geneva,
- [6] AMBARTSUMYAN, R.S., A.M. GLUKHOV, V.V. GONCHAROV, A.I. KOVALEV, and S.A. SKVORTSOV. Fuel elements for water-cooled water-moderated reactors of atomic power plants. IN: International Conference on the Peaceful Uses of Atomic Energy. 2d, Geneva, 1958. Proceedings, Geneva, United Nations, P/2196, v. 6, 1958, 645-654.

 JX1977.A2 A/Conf. 15/1, v. 6
- [7] ANAN'YEV, YE.P. Atomic power engineering in the USSR. IN:
 Akademiya nauk SSSR. Vestnik, no. 3, 1958, 3-14.
 AS262.A627 1958
- [8] ANDREYEV, P.A., et al. Zhidkometallicheskiye teplonositeli yadernykh reaktorov [Nuclear reactor liquid-metal heat-transfer agents]. Leningrad. Sudpromgiz, 1959. 383 p. TK9203.F5K3

- [9] ANDRZEJEWSKI, S., et al. The perspectives of the Polish nuclear energy program. Nukleonika, v. 3, no. 5, 1958, 487-498.

 TK9001.N86, v. 3
- [10] Atomic reactor in Georgia went critical. Izvestiya, 6 Nov 1959, 3. TCl.L4 1959
- [11] BALABANOV, YE.M. Yadernyye reaktory [Nuclear reactors].

 Moskva, Voyen. Izd-vo Min-ta obor. SSSR, 1957. 210 p.

 TK9202.B3
- [12] BARASHEV, P., and I. MOROZ. And the flag flew over an atomic hero; icebreaker "Lenin" was launched. Komzomol'skaya pravda, 13 Sept 1959, 5. 0630.R8K58 1959
- [13] BRIMIN, V.F., P.A. KRUPCHITSKIY, YU.S. SIDOROV, and O.V. SHVKDOV. Distribution of thermal neutron density along the radii of rod fuel elements. IN: International Conference on the Peaceful Uses of Atomic Energy. 2d, Geneva, 1958. Proceedings, Geneva, United Nations, P/2034, v. 16, 1958, 663-670.

 JX1977.A2 A/Conf. 15/1, v. 16
- [14] BEREZIN, V.S., L.V. GROSHEV, V.S. DUKAREV, M.B. YEGIAZAROV, V.N. KOROLEV, V.G. MADEYEV, and YU.G. NIKOLAYEV. Spatial distribution of gamma-rays and moderated neutrons in the graphite column of the RFT reactor. Atomnaya energiya, v. 2, no. 2, 1957, 118-112. QC770.A84, v. 2
- [15] BILLING, W. Nuclear research. Polish perspectives, v. 3, no. 3, 1960, 15-21.
- [16] BILLING, W. Possibilities of nuclear energy development in Poland. Przeglad techniczny, v. 80, no. 1, 1959, 7-9.
 T4.P85, v. 80
- [17] BLOKHINTSEV, D.I., N.A. DOLLEZHAL', and A.K. KRASIN. Reactor of the Atomic Power Station of the Academy of Sciences USSR. Atomnaya energiya, no. 1, 1956, 10-23.

 QC770.A84 1956
- [18] BLOKHINTSKV, D.I., M.YE. MINASHIN, and YU.A. SKRGKYEV. Physical and thermal calculations for the reactor of the Atomic Power Station of the Academy of Sciences USSR. Atomnaya energiya, no. 1, 1956, 24-42.

 QC770.A84 1956
- [19] BLOKHINTSRV, D.I., and N.A. NIKOLAYEV. First Atomic Power Station in the USSR and the prospects for atomic power development. IN: International Conference on the Peaceful Uses of Atomic Energy. 1st, Geneva, 1955. Proceedings, Geneva, United Nations, P/615, v. 3, 1955, 35-55.

 JX1977.A2 A/Conf. 8/2, v. 3

- [20] BROKHOVICH, B.V., et al. Disassembly of graphite-uranium reactor for radio-isotope production after four years' operation. IN: International Conference on the Peaceful Uses of Atomic Energy. 2d, Geneva, 1958. Trudy, Moskva, Izd-vo Glavnogo upravleniya po ispol'zovaniyu atomnoy energii pri Sovete Ministrov SSSR, P/2297, v. 2, 1959, 319-333.

 QC770.I53 1958, v. 2
- [21] BULKIN, YU.M., and YE.N. VOLKOV. A nuclear reactor for research purposes. Inzhenerno-fizicheskiy zhurnal, v. 1, no. 10, 1958, 3-10.
- [22] BYAKOV, V.M., and B.L. IOFFK. A homogeneous natural-uranium reactor. IN: International Conference on the Peaceful Uses of Atomic Energy. 2d, Geneva, 1958. Proceedings, Geneva, United Nations, P/2296, v. 13, 1958, 462-469.

 JX1977.A2 A/Conf. 15/1, v. 13
- [23] CH'IEN, SAN-CHIANG. Atomic energy in peaceful construction. Kitay, no. 21, 1959, 18-19.
- [24] CH'IEN, SAN-CHIANG. Development of nuclear research in People's Republic of China. IN: Akademiya nauk SSSR. Vestnik, no. 4, 1960, 121-124. AS262.A627 1960
- [25] China's first atomic reactor in operation. Peking Review, v. 1, no. 19, 1958, 4.
- [26] Construction of the atomic reactors. IN: Akademiya nauk SSSR. Vestnik, no. 11, 1959, 67-69.

 AS262.A627 1959
- [26a] DARK, W. Experimental research in reactor physics. Mukleonika, v. 5, no. 7-9, 1960, 415-438.

 TK9001.N86, v. 5
- [27] DOLLEZHAL', N.A. The fifth anniversary of nuclear power engineering. Atomnaya energiya, v. 7, no. 1, 1959, 5-10.

 QC770.A84, v. 7
- [28] DOLLEZHAL', N.A. Uranium-graphite reactors for power stations with superheated steam. Atomnaya energiya, v. 3, no. 11, 1957, 391-397. QC770.A84, v. 3
- [29] DOLLEZHAL', N.A., A.K. KRASIN, P.I. ALESHCHENKOV, A.N. GRI-GOR'YANTS, B.V. FLORINSKIY, M.E. MINASHIN, I.YA. YEMEL'YANOV, N.M. KUGUSHEV, V.N. SHARAPOV, YU.I. MITYAYEV, and A.N. GALANIM. Uranium-graphite reactor with superheated high pressure steam. IN: International Conference on the Peaceful Uses of Atomic Energy. 2d, Geneva, 1958. Proceedings, Geneva, United Nations, P/2139, v. 8, 1958, 398-414.

 JX1977.A2 A/Conf. 15/1, v. 8

- [30] DOLLEZHAL', N.A., A.K. KRASIN, N.A. NIKOLAYEV, A.N. GRIGOR'YANTS, and G.N. USHAKOV. Operating experience with first atomic power station in the USSR and its use under boiling conditions. IN: International Conference on the Peaceful Uses of Atomic Energy. 2d, Geneva, 1958. Proceedings, Geneva, United Nations, P/2183, v. 8, 1958, 86-99.

 JX1977.A2 A/Conf. 15/1, v. 8
- [31] DOROSHCHUK, V.YR. Development of nuclear power engineering in the USSR. Energetik, no. 2, 1960, 27-33.

 TJ4.E53 1960
- [32] DUBOVSKIY, B.G. Safe reactor start-up from zero power.
 Atomnaya energiya, v. 4, no. 4, 1958, 365-366.
 QC770.A84, v. 4
- [33] FEYNBERG, S. Research reactors. IN: Primeneniye atomnoy energii v mirnykh tselyakh. Moskva, Akademiya nauk SSSR, 1956, 10-29. TK9146.A7
- [34] FEYNBERG, S.M., YE.S. ANTSIFEROV, V.P. KATKOV, L.V. KOMISSAROV, I.K. LEVINA, YU.V. NIKOL'SKIY, A.N. NOVKOV, V.S. OSMACHKIN, G.A. STOLYAROV, and YA.V. SHEVELEV. Fuel burnup in water-moderated water-cooled power reactors and uranium-water lattice experiments. IN: International Conference on the Peaceful Uses of Atomic Energy. 2d, Geneva, United Nations, P/2145, v. 13, 1958, 348-415.

 JX1977.A2 A/Conf. 15/1, v. 13
- [35] FEYNBERG, S.M., ST.T. KONOBEYEVSKIY, N.A. DOLLEZHAL', I.YA.
 YEMEL'YANOV, V.A. TSYKANOV, YU.M. BULKIN, A.D. ZHIRNOV
 A.G. FILIPPOV, O.L. SHCHIPAKIN, V.P. PERFIL'YEV, A.G. SAMOYLOV,
 and V.I. AGEYENKOV. The 50 NV research reactor, SM. Atomnaya
 energlya, v. 8, no. 6, 1960, 493-504...
 QC770.A84. v. 8
- [36] FEYNBERG, S.M., YE.D. VOROB'YEV, V.M. GRYAZEV, V.B. KLIMENTOV, N.YA. LYASHENKO, and V.A. TSYKANOV. An intermediate reactor for obtaining high intensity neutron fluxes. IN: International Conference on the Peaceful Uses of Atomic Energy. 2d, Geneva, 1958. Proceedings, Geneva, United Nations, P/2142, v. 10, 1958, 296-320.

 JX1977.A2 A/Conf. 15/1, v. 10
- [37] First Hungarian atomic reactor. Magyar epitoipar, v. 7, no. 3, 1958, 90-98. TH4, M3, v. 7
- [38] First Yugoslavian experimental nuclear reactor. Kemija u industriji, v. 7, no. 5, 1958, 135.
 TOL.K36, v. 7
- [39] FLACH, G. Research reactor in Dresden. Energie und technik, v. 8, no. 6, 1958, 242-247. T3.E5, v. 8

- [40] FURSOV, V.S. Raboty Akademii nauk SSSR po uran-grafitovnym reaktoram [Works of the Academy of Sciences USSR on uranium-graphite reactors]. IN: Akademiya nauk SSSR. Sesiya po mirnomy ispol'zovaniyu atomnoy energii, 1-5 iyulya 1955 g. Plenarnoye zasedaniye. Moskva, 1955. 104 p. QC771.A4, v. 1
- [41] FURSOV, V.S. Uran-grafitovyve yadernyve.reaktory [Uranium-graphite nuclear reactors]. Noskva, Izd-vo AN SSSR, 1956. 39 p. TK9202.F8
- [42] GALANIN, A.D., S.A. NEMIROVSKAYA, and A.P. RUDIK (Theory);
 YU.G. ABOV, V.F. EZIKIN, and P.A. KRUPCHITSKIY (Experiment).
 Critical experiments on a heavy-water research reactor.
 IN: International Conference on the Peaceful Uses of Atomic Energy. 2d, Geneva, 1958. Proceedings, Geneva, United Nations, P/2036, v. 12, 1958, 380-391.

 JX1977.A2 A/Conf. 15/1, v. 12
- [43] GAYSKNOK, A.A., et al., eds. Kak byl postroyen atomnyy ledokol "Lenin" [How the atomic icebreaker "Lenin" was built]. Leningrad, Sudpromgiz, 1959. 62 p.
- [44] GONCHAROV, V.V. Graphite in reactor design. Atomnaya energiya, v. 4, nc. 11, 1957, 398-408.

 QC770,A84, v. 4
- [45] GONCHAROV, V.V., and others. Some new and rebuilt thermal research reactors. IN: International Conference on the Peaceful Uses of Atomic Energy. 2d, Geneva, 1958. Proceedings, Geneva, United Nations, P/2185, v. 10, 1958. 321-367. JX1977.A2 A/Conf. 15/1, v. 10
- [46] GRIGOR'YANTS, A.N. Certain problems in the operation of an atomic power station. Atomnaya energiya, v. 2, no. 2, 1957, 109-117. QC770.A84, v. 2
- [47] GRIGOR'YEV, A. Ural atomic (power station). Ogonek, no. 34, 1959, 2-3. AP50.042 1959
- [48] GRININ, O. First in Eastern Soviet Union. Nauka i zhizn', no. 11, 1959, 32. Q4.N43 1959
- [49] GROSHEV, L.V., B.I. GAVRILOV, and A.M. DEMIDOV. Thermal neutron capture gamma-rays. Atomnaya energiya, v. 6, no. 3, 1959, 281-298. QC770.A83, v. 6
- [50] HRDLICKA, Z. Research reactor for the Nuclear Physics Institute of the Czechoslovak Academy of Sciences. Jaderna energie, v. 3, no. 5, 1957, 130-133. TK9001.J3, v. 3

- [51] HARIONOV, S. Atom for peaceful uses. Komsomol'skaya pravda, 11 Sept 1959, 1. 0530.R8K58 1959
- [52] IL'INSKIY, N. Ural atomic (power station). Pravda, 29 Aug 1959, 1. J7.R4 1959
- [53] IOFFE, B.L., and L.B. OKUN'. Burning fuels in nuclear reactors.
 Atomnaya energiya, no. 4, 1956, 80-91.

 QC770.A84 1956
- [54] KARPENKO, G.V. Academy of Sciences Ukrainian SSR. IN: Akademiya nauk SSSR. Vestnik, no. 11, 1957, 134-141.

 AS262.A627 1957
- [55] KAZACHKOVSKIY, O.D. The economics of nuclear fuel for fast power reactors. IN: International Conference on the Peaceful Uses of Atomic Energy. 2d, Geneva, 1958.
 Proceedings, Geneva, United Nations, P/2028, v. 13, 1958, 307-313.

 JX1977.A2 A/Conf. 15/1, v. 13
- [56] KHRISTENKO, P.I., P.A. PETROV, V.A. MITROPOLEVSKIY, K.D. SINEL'NIKOV, V.YE. IVANOV, and V.F. ZELENSKIY. Rod fuel element
 for gas-cooled heavy-water power reactor. IN: International
 Conference on the Peaceful Uses of Atomic Energy. 2d, Geneva,
 1958. Proceedings, Geneva, United Nations, P/2053, v. 6,
 1958, 370-378.

 JX1977.A2 A/Conf. 15/1, v. 6
- [57] KIKOIN, I.K., V.A. DMITRIYEVSKIY, I.S. GRIGOR'YEV, YU.YU. GLAZKOV, S.V. KERSNOVSKIY, and B.G. DUBOVSKIY. Experimental reactor with gaseous fissionable substance (UF6). IN: International Conference on the Peaceful Uses of Atomic Energy. 2d, Geneva, 1958. Proceedings, Geneva, United Nations, P/2502, v. 9, 1958, 528-534. JX1977.A2 A/Conf. 15/1, v. 9
- [58] KLIK, F., and J. MARKVART. Natural uranium and heavy water reactors. IN: International Conference on the Peaceful Uses of Atomic Energy. 2d, Geneva, 1958. Proceedings, Geneva, United Nations, P/2094, v. 9, 1958, 36-44.

 JX1977.A2 A/Conf. 15/1, v. 9
- [59] KOLODZIEJCZYK, A. First (reactor) in Poland. Zolniers Polski, no. 18, 1957, 8-9. UA829.P7Z6 1957
- [60] KOMAROVSKIY, A.W. Stroitel'nyye konstruktsii yadernykh reaktorov [Structural designs of nuclear reactors].

 Koskva, Izd-vo Atomizdat, 1958. 160 p.

 TK9209.K59
- [61] KOMAROVSKIY, A.N. Ways of economizing on steel in reactors.

 Atomnaya energiya, v. 7, no. 3, 1959, 212-213.

 QC770.A84, v. 7

- [62] KOSTYRKO, A. Investigations of radiolytical decomposition of water in the primary cooling circuit of the nuclear reactor "EWA". Nukleonika, v. 5, no. 3, 1960, 133-142.

 TK9001.N86, v. 5
- [63] KOZLOV, V.F., and N.G. ZEMLYANSKIY. Design of the VVR-S research reactor. Atomnaya energiya, v. 8, no. 4, 1960, 305-315. QC770.A84, v. 8
- [64] KOWALSKA, K. Work on the design of the second Polish research reactor. Nukleonika, v. 3, no. 2, 1958, 180-183.

 TK9001.N86, v. 3
- [65] KRASIN, A.K. Atomnyye elektrostantsii; razvitiye yadernoy energetiki za pyat' let [Atomic power stations; development of nuclear power engineering during the last five years]. Moskva. Znaniye 1959. 22 p. (Vsesoyuznoye obshchestvo po rasprostraneniyu politicheskikh i nauchnykh znaniy. Seriya IX, 1959, no. 25).

 AS262.V833 1959, no. 25
- [66] KRASIN, A.K. Energeticheskiye yadernyye reaktory [Atomic power reactors]. Moskva, Izd-vo "Znaniye", 1957. 36 p. illus. (Vsesoyuznoye obshchestvo po rasprostraneniyu politicheskikh i nauchnykh znaniy. Seriya VIII, 1957, no. 4). Qlll.V8 1957, no. 4
- [67] KRASIN, A.K., and B.G. DUBOVSKIY. Physical beryllium reactor. Atomnaya energiya, no. 4, 1956, 147-148. QC770.A84 1956
- [68] KRASIN, A.K. B.G. DUBOVSKIY, YE.YA. DOYL'HITSYN, L.A. MATALIN, YE.I. INYUTIN, A.V. KAMAYEV, and M.N. LANTSOV. The study of the physical characteristic of the reactor of the Atomic Power Station. Atomnaya energiya, no. 2, 1956, 2-10.

 QC770.A84 1956
- [69] KRASIN, A.K., B.G. DUBOVSKIY, M.N. LANTSOV, YU.YU. GLAZKOV, R.K. GONCHAROV, A.V. KAMAYEV, L.A. GERASEVA, V.V. VAVILOV, YR.I. INYUTIN, and A.P. SENCHENKOV. Physical characteristics of beryllium moderated reactor. IN: International Conference on the Peaceful Uses of Atomic Energy. 2d., Geneva, 1958. Proceedings, Geneva, United Nations, P/2146, v. 12, 571-579.

 JX1977.A2 A/Conf. 15/1, v. 12
- [70] KRUZHILIN, G.N. Reactor for physical and technical investigations. IN: International Conference on the Peaceful Uses of Atomic Energy. 1st, Geneva, 1955. Proceedings, Geneva, United Nations, P/620, v. 2, 1956, 435-448.

 JX1977.A2 A/Conf. 8/2, v. 2

- [71] KRUZHLIN, G.N., and V.I. SUBBOTIN. Heat removal in light water cooled-and-mcderated reactors. IN: International Conference on the Peaceful Uses of Atomic Energy. 2d, Geneva, 1958. Trudy, Moskva, Izd-vo Glavnogo upravleniya po ispol'zovaniyu atomnoy energii pri Sovete Ministrov SSSR, P/2144, v. 2, 1959, 135-151.
- [72] KUEHN, M. The nuclear research center of the German Democratic Republic. Die Technik, v. 13, no. 4, 1958, 297-300.
- [73] KURCHATOV, I.V. Aspects of atomic power development in the USSR. Atomnaya energiya, no. 3, 1956, 283-298.

 QC770.A84 1956
- [74] KURCHATOV, I.V. Nekotoryye voprosy razvitiya atomnoy energetiki SSSR [Aspects of atomic power development in the USSR]. Moskva, 1956. 26 p.

 TK9202.KC
- [75] K.YU. In the atomic pavilion of the All-Union industrial exhibit. Atomnaya energiya, v. 2, no. 4, 1957, 391. QC770.A84, v. 2
- [76] K.YU. Latvian research reactor. Atomnaya energiya, v. 7, no. 1, 1959, 49-80. QC770.A84, v. 7
- [77] K.YU. The Lenin prizes for the creation of the First Atomic Power Station. Atomnaya energiys, v. 3, no. 8, 1957, 87-90. QC770.A84, v. 3
- [78] LAKHANIN, V.V. Atomic engines for ships. Atomnaya energiya, v. 3, no. 9, 1957, 222-226. QC770.A84, v. 3
- [79] Laureates of Lenin Prizes. Atomnaya energiya, v. 8, no. 5, 1960, 407-408. QC770.AC4, v. 8
- [80] LAVRISHCHEV, A.N. Assistance of the Soviet Union to other countries in the peaceful application of atomic energy. IN: International Conference on the Peaceful Uses of Atomic Energy. 1st, Geneva, 1955. Proceedings, Geneva, United Nations, P/619, v. 16, 1956, 43-45.

 JX1977.A2 A/Conf. 8/2, v. 16
- [81] LAZUKOV, N.A., I.YA. CHKLMOKOV, and V.P. IVANOV. Study of the experimental nuclear reactor, VVR-S. Atomnaya energiya, v. 5, no. 1, 1958, 44-51. QC770.A84, v. 5
- [82] Leningrad nuclear reactor. Izvestiya, 31 Dec 1959, 1. TCl.L4 1959

- [83] LEYPUNSKIY, A.I., A.I. ABRAMOV, V.N. ANDERYEV, A.I. BARYSHNIKOY, I.I. BONDARENKO, N.I. FETISOY, V.I. GALKOY, V.I. GOLUBEV, A.D. GULKO, A.G. GUSEYIHOV, O.D. KAZACHKOVSKIY, N.V. KOZLOVA, N.V. KRASNOYAROV, B.D. KUZ'MIROV, V.N. HOROZOV, M.N. NIKOLAYEV, G.M. SMIRENKIN, YU.YA. STAVISSKIY, F.I. UKRAINTSEY, L.N. USACHEV, N.I. FETISOV, and L.YE. SHERMAN. Studies in the physics of fast neutron reactors. IN: International Conference on the Peaceful Uses of Atomic Energy. 2d, Geneva, 1958. Proceedings, Geneva, United Nations, P/2038, v. 12, 1958, 3-15.
- [84] LEYPUNSKIY, A.I., D.I. BLOKHINTSEY, I.W. ARISTARKHOV, I.I.
 BONDARENKO, O.D. KAZACHKOVSKIY, M.S. PINKHASIK, YU.YA.
 STAVISSKIY, B.A. STUNEUR, P.I. UKRAINTSEY, and L.W. USACHEV.
 The BR-2 experimental reactor for fast neutrons. Atomnaya
 energiya, v. 2, no. 6, 1957, 495-500.
 QC770.A84, v. 2
- [85] LEYPUNSKIY, A.I., V.G. GRABIN, N.W. ARISTARKHOV, I.I. BONDARENKO, O.D. KAZACHOVSKIY, O.L. LYUBIRTSEV, S.A. PASHKOV, M.S. PINKHASIK, K.K. RENNE, YU.YA. STAVISSKIY, P.A. UKRAINTSEV, L.N. USACHEV, and E.A. STAMBUR. Experimental fast reactors in the Soviet Union. IN: International Conference on the Peaceful Uses of Atomic Energy. 2d, Geneva, 1958. Proceedings, Geneva, United Nations, P/2129, v. 9, 1958, 348-357.

 JX1977.A2 A/Conf. 15/1, v. 9
- [86] LEYPUNSKIY, A.I., O.D. KAZACHKOVSKIY, G.YU. ARTYUKHOV, A.I. BARYSHNIKOV, T.S. ERLAHOVA, V.N. GALKOV, YU.YA. STAVSSKIY, E.A. STUMBUR, and L.YE SHKRMAN. Measurements of radiative capture cross sections for fast neutrons. IN: International Conference on the Peaceful Uses of Atomic Energy. 2d, Geneva, 1958. Proceedings, Geneva, United Nations, P/2219, v. 15, 1958, 50-59.

 JX1977.A2 A/Conf. 15/1, v. 15
- [87] MARCHUK, G.I. Multigroup method of calculations used in the design of the reactor for the stomic electric power station. Atomnaya energiya, v. 1, no. 2, 1956, 11-20.

 QC770.A84, v. 1
- [88] MIKHAYLOV, V.A. Fizicheskiye osnovy polucheniya atomnoy energii [Physical principle of atomic energy production].
 2d., rev. and enl. Moskva, Voyen. izd-vo Min-va obor.
 SSSR, 1958. 174 p.
- [89] Nepszabadsag, 7 Wov 1959, 10.
- [90] Nepszabadsag, 13 Nov 1959, 2.

- [91] MEUMANN, J., C. SIMANE, M. WEBER, J. UHBANEC, L. DAVID, P. CERVINKA, and R. HEJLEK. The research reactor and program of the Czechoslovak Academy of Sciences Institute of Nuclear Physics. IN: International Conference on the Peaceful Uses of Atomic Energy. 2d, Geneva, 1958. Proceedings, Geneva, United Nations, P/2091, v. 10, 1958, 291-295.

 JX1977.A2 A/Conf. 15/1, v. 10
- [92] New atomic center. Trud, 29 August 1959, 3-4.
 AP58.B8T7 1959
- [93] News in brief.
 - a) Atomnaya energiya, v. 3, no. 9, 1957, 276.
 - b) Atomnaya energiya, v. 3, no. 12, 1957, 567.
 - c) Atomnaya energiya, v. 3, no. 12, 1957, 569.
 - d) Atomnaya energiya, v. 4, no. 1, 1958, 108.
 - e) Atomnaya energiya, v. 4, no. 4, 1958, 401.
 - f) Atomnaya energiya, v. 5, no. 1, 1958, 92.
 - g) Atomnaya energiya, v. 6, no. 3, 1959, 357.
 - h) Atomnaya energiya, v. 6, no. 4, 1959, 446.
 - 1) Atomnaya energiya, v. 7, no. 2, 1959, 189.
 - J) Atomnaya energiya, v. 8, no. 2, 1960, 174.
 - k) Atomnaya energiya, v. 8, no. 2, 1960, 176.
 - 1) Atomnaya energiya, v. 8, no. 4, 1960, 397.
 - m) Atomnaya energiya, v. 8, no. 6, 1960, 378.
 - n) Atomnaya energiya, v. 9, no. 2, 1960, 158.
- [94] MIKOLAYRV, M.A. Atomni elektrostantsiyi [Atomic power stations]. Kyyiv, Derzhtekhvydav, 1958. 76 p. (Naukovo-populyarna bibloteka). TK1078.N5
- [95] MIKOLAYEV, M.A. Development of atomic energy in the Soviet Union. Atomaya energiya, v. 3, no. 11, 1957, 385-390.

 QC770.A84, v. 3

- [96] NIKOLAYEV, N.A. Pervaya atomnaya elaktrostantsiya Sovetskogo Soyuza [First atomic power station in the Soviet Union].

 Moskva, Znaniye 1956. 30 p. (Vsesoyuznoye obshchestvo po rasprostraneniyu politicheskikh i nauchnykh znaniy. Seriya IV, 1956, no. 14).

 H39.V8 1956, no. 23
- [97] NIKOLAYEV, YU.G. A 2000-kolowatt thermal power nuclear reactor for research purposes. IN: International Conference on the Peaceful Uses of Atomic Energy. 1st, Geneva, 1955, Proceedings, Geneva, United Nations, P/622, v. 2, 1956.
 399-401. JX1977.A2 A/Conf. 8/2, v. 2
- [98] NIKOLAYEV, YU.G. The experimental nuclear reactor with ordinary water and enriched uranium. IN: International Conference on the Peaceful Uses of Atomic Energy. 1st, Geneva, 1955.

 Proceedings, Geneva, United Nations, P/621, v. 2, 1956, 392-398.

 JX1977.A2 A/Conf. 8/2, v. 2
- [99] NOWACKI, P.J. Poland's nuclear energy plan. Nukleonika, v. 3, no. 1, 1958, 3-13. TK9001.No., v. 3
- [100] Muclear-propelled ice-breaker "Lenin". Sudostroyeniye, no. 1, 1959, 26-33. VM4.28 1959
- [101] OSTROUMOV, G.M. Pervaya (atomnaya elektricheskaya stantsiya)
 v mire [The first Atomic Power Station in the world].
 Moskva, Moskovskiy rabochiy, 1956. 35 p.
 TK1377.R808
- [102] Our country enters the atomic age; atomic reactor in operation; eyclotron completed. Ta-kung Pao, 1 July 1958, 1.
- [103] PAL, L., KISS, D., and I. KISS. Scientific preparatory work for the use of the first Hungarian experimental nuclear reactor. Magyar Tudomany, May 1958, 183-187.

 AS142.N3315 1958
- [104] PARKHIT'KO, V. In the Institute of Physics of the Academy of Sciences Ukrainian SSR. Atomnaya energiya, v. 8, no. 4, 1960, 380-381. QC770.A84, v. 8
- [105] PETROV, P.A. Yadernyye energiticheskiye ustanovki [Nuclear power plants]. Moskva, Gosenergoizdat, 1958. 254 p. TK9002.P4
- [106] POPOVIC, D. A bare critical assembly of natural uranium and heavy water. IN: International Conference on the Peaceful Uses of Atomic Energy. 2d, Geneva, 1958. Proceedings, Geneva, United Nations, P/491, v. 12, 1958, 392-394.

 JX1977.A2 A/Conf. 15/1, v. 12

- [107] POPOVIC, D., N. RAISIC, H. MARKOVIC, S. TAKAC, Z. ZDRAVKOVIC, and B. LOLIC. Measurement of M3 and koo for heavy water-natural uranium assembly. IN: Vinca Yugoslavia. Institut za nuklearne nauke. Bulletin, v. 9, no. 169, 1959, 15-19.

 QC770.V55, v. 9
- [108] POPOVICH, D., S. TAKAC, H. MARKOVIC, N. RAISIC, Z. ZDRAVKOVIC, and L.J. RADANOVICH. Zero energy reactor "RB". IN: Vinca, Yagoslavia, Institut za nuklearne nauke. Bulletin, v. 9, no. 168, 1959, 5-13. QC770.V55, v. 9
- [109] PRECI, G. Development, requirements, and possibilities of power production in Yugoslavia and the prospects of using nuclear energy. Elektropriveda, v. 8, no. 6, 1955, 329-334.

 TK4.E7436, v. 5
- [110] Project for a 420,000 kw atomic power station. USSR report to the 11th Sectional Meeting of the World Power Conference, Belgrade, 1957. Jaderna energie, v. 3, no. 10, 1957, 292-304. TK9001.J3, v. 3
- [111] PURICA, I. Predetermination of the behavior in transitory conditions of the 2000-kw reactor at the Institute of Atomic Physics of Bucharest. IN: International Conference on the Peaceful Uses of Atomic Energy. 2d, Geneva, 1958. Proceedings, Geneva, United Nations, P/1282, v. 10, 1958, 217-223.

 JX1977.A2 A/Conf. 15/1, v. 10
- [112] P.V. In the Institute of Muclear Physics of the Uzbek SSR Academy of Sciences, Atomnaya energiya, v. 6, no. 1, 1959, 79-80. QC770.A84, v. 6
- . [113] RASCU, P. Construction of an atomic reactor and cyclotron at the Institute of Atomic Physics of the Rumanian People's Republic. Energetica, v. 6, no. 5, 1958, 208-211.

 HD9685.M666, v. 6
 - [114] RASPEVIN, K. Atomnyy gigant na Urale [Atomic giant in the Ural]. Trud, 12 August 1959, 1.

 AP58.B8T7
 - [115] Reactor of the Academy of Sciences of Ukrainian SSR. Sovetskaya Latviya, 22 July 1959, 4. PG9145.RIS6 1959
 - [116] SADOVSKIY, YE. Malyye Dubny. Komsomol'skaya pravda, 17 June 1960, 1. G630.R8K58 1960
 - [117] SENCHENKOV, A.P. Measurements of the neutron spectrum in the thermal column of the power station reactor. Atomnaya energiya, v. 5, no. 2, 1958, 124-129.

 QC770.A84, v. 5

- [118] SEVCIK, A. Engineering and economic aspects of the countruction of an atomic power station in Czechoslovakia. IN:
 International Conference on the Peaceful Uses of Atomic Energy. 2d, Geneva, 1958, Proceedings, Geneva, United Nations, P/2092, v. 8, 1958, 322-328.

 JX1977.A2 A/Conf. 15/1, v. 8
- [119] SHEVCHENKO, V.B., et al. Problems in the treatment of irradiated fuel elements at the first USSR atomic fuel station. IN:

 International Conference on the Peaceful Uses of Atomic Energy. 2d, Geneva, 1958. Proceedings, P/2182. Geneva, United Nations, v. 17, 1958.

 JX1977.A2 A/Conf. 15/1, v. 17
 - [120] SINEL'NIKOV, K.D., V.YE. IVANOV, V.M. AMORKAKO, and V.D. BURLAKOV. Refining beryllium and other metals by condensation on heated surfaces. IN: International Conference on the Peaceful Uses of Atomic Energy. 2d, Geneva, 1958. Trudy, Moskva, Izd-vo Glavnogo upravieniya po ispol'zovaniyu atomnoy energii pri Sovete Ministrov SSSR, P/2051, v. 3, 1959, 526-535. QC770.I53 1958, v. 3
 - [121] SINKL'NIKOV, K.D., V. YR. IVANCY, and V.P. ZKLKNSKIY. Magnesium-beryllium alloys as material for nuclear reactors. IN:
 International Conference on the Peaceful Uses of Atomic Energy. 2d, Geneva, 1958. Proceedings, Geneva, United Nations, P/2153, v. 5, 1958, 234-240.

 JK1977.A2 A/Conf. 15/1, v. 5
 - [122] SIVINTSEV, YU.V., and B.G. POLOGIKH. Shielding system of the atomic icebreaker "Lenin". IN: International Conference on the Peaceful Uses of Atomic Energy. 2d, Geneva, 1958. Trudy, Moskva, Izd-vo Glavnogo upravleniya po ispol'zovaniya atomnoy energii pri Sovete Ministrov SSSR, P/2518, v. 2, 1959, 87-104. QC770.153 1958, v. 2
 - [123] SKVORTSOV, S.A. Water-water power reactors in the USSR. IN:
 International Conference on the Peaceful Uses of Atomic
 Energy. 2d, Geneva, 1958. Proceedings, Geneva, United
 Nations, P/2184, v. 9, 1958, 45-55.

 JX1977.A2 A/Conf. 15/1, v. 9
 - [124] SKVORTSOV, S., and V. SIDORENKO. Atomic power stations. IN:
 Primeneniye atomnoy energii v mirnykh tselyakh. Noskva,
 Akademiya nauk SSSR, 1956, 30-36.
 TE9146.A7
- [125] Soviet atom service the peace; Kiyev reactor went critical.

 Pravda Ukrainy, 13 Feb 1960, 1.

- [126] STEKNBECK, M. Problems of nuclear reactor construction in the German Democratic Republic. Monthly Technical Review, v. 3, no. 10/11, 1959, 246-252.
- [126a] STEKNEECK, N. The atomic source of power. Die Technik, v. 13, no. 9, 1958, 608-613.

 T183.L72, v. 13
- [127] SZABADOS, L. The Csilleberc subcritical atom reactor.
 Muszaki elet, 26 Nov 1959, 6.
 TA4.N333 1959
- [128] SZIRAKI, Z., and M. EJRANYI. Mechanical equipment for the research reactor in Csilleberc. Epuletgepeszet, v. 7, no. 3, 1958, 92-99.
- [129] There are 100,000; there will be 600,000! Yunyy tekhnik, v. 3, no. 12, 1958, 8-9. T4.189, v. 3
- [130] URBANETS, Y. First Czechoslovak reactor. IN: Akademiya nauk SSSR. Vestnik, v. 28, no. 6, 1958, 82-86.
 AS262.A627, v. 28
- [131] USHAKOV, G.N. Pervaya atomnaya elektrostantsiya; opyt stroitel'stva i ekspluatatsii [First atomic-power station; experience in construction and expluatation]. Noskva, Gosenergoizdat, 1959. 223 p. TK1078.U8
- [132] VERLE, G. The first Hungarian experimental atomic reactor.

 Magyar tudomany, no. 7-8, 1959, 379-385.

 AS142.M3415 1959
- [133] VINOGRADOV, I. Another atomic power station. Pravda, 14 Aug 1959, 1. J7.R4 1959
- [134] VOSKOBIYNYK, D.I. Yadernaya energetika [Muclear energy].

 Moskva, Gos. izd-vo tekhniko-teoreticheskoy literatury,
 1956. 168 p. TK9145.V6
- [135] We have put into operation a nuclear reactor. Ukrayina, no. 5, 1960, 3. AP58.U5U5 1960
- [136] WOLCZEK, O. Swierk-Polish atomic "forge". Mlody tekhnik, no. 7(120), 1958, 1-5. T4.M573 1958

[137]

YKMKL'YANOV, V.S. The development of international cooperation by the USSR in the peaceful uses of atomic energy. IN: International Conference on the Peaceful Uses of Atomic Energy. 2d, Geneva, 1958. Proceedings, P/2415, Geneva, United Nations, 1958. 7 p.

- [138] YEMEL'YANOV, V.S. The future of atomic power supplies in the USSR. IN: International Conference on he Peaceful liens of Atomic Energy. 2d, Geneva, 1958. Truly, Moskva, Izd-vo Glavnogo upravleniya po ispol'zoveniyu atomnoy energii pri Sovete Ministrov SSSR, P/2027, v. 2, 1959, 7-14. QC770.153 1950, v. 2
- [139] YERMAKOV, G.V. Atomic power stations. Teploanergetika, no. 10. 1957, 88-93. TJ4.T43 1957
- [140] YKRMAKOV, G.V. Moshchnyye atomnyye elektrostantsii [High powered atomic power stations]. Moskva, Izd-vo "Znaniya", 1958. 31 p. (Vsesoyuznoye obshchestvo po rasprostranantyu politicheskikh i nauchnykh znaniy. 3eriya IV, 1958, nu. 18). H39.V82 1958, no. 18
- [141] ZARIC, Z. Nuclear reactors at the Geneva Conference 1958, Tekhnika, no. 11, 1959, 1693-1708. T4.T228 1959
- [142] Zarya vostoka, 20 November 1959, 2.
- [143] Zarya vostoka, 21 November 1959, 1-2.
- [144] ZELAZNY, R. Applied reactor theory in the Institute of Nuclear Research. Nukleonika, v. 5, no. 7-8, 1960, 439, 459.

 TN9001.136, v. 5
- [145] ZUBAREV, T.N. Stability of the heat output from a pulsed reactor. Atomnaya energiya, v. 7, no. 5, 1959, 421-423, QC770.AC4, v. 7
- [146] ZUBAREV, T.N. A pulsed reactor. Atcomeya energiya, v. 5, no. 6, 1959, 605-617. Q3770.434, v. 5

UNCLASSIFIED

UNCLASSIFIED