U.S. MISSILE DEFENSE PROGRAMS

Recommended Citation

The coverage zone of the boost-phase defense would be about 1,000 kilometers beyond the location of the interceptor, for a total radius of about 4,000 kilometers. Such a system would be likely to be operational by 2002, if the current program remains on schedule. Boost-phase defenses would be most useful against ICBMs aimed at Europe, but they would also offer an operational alternative to interceptors intended for North America.

In contrast, a defense against ICBMs entering the atmosphere (i.e. a "slam" defense) would be more difficult to develop. Such a system would have to be designed to destroy any remnants of the ICBM, including any MIRVs or multiple warheads. In addition, the high pressure in the atmosphere causes the warheads to be subject to high accelerations, which makes them difficult to hit with precision.

Boost-phase defenses would be most useful against ICBMs aimed at Europe, but they would also offer an operational alternative to interceptors intended for North America. The defense against ICBMs entering the atmosphere (i.e. a "slam" defense) would be more difficult to develop. Such a system would have to be designed to destroy any remnants of the ICBM, including any MIRVs or multiple warheads. In addition, the high pressure in the atmosphere causes the warheads to be subject to high accelerations, which makes them difficult to hit with precision.

The coverage zone of the boost-phase defense would be about 1,000 kilometers beyond the location of the interceptor, for a total radius of about 4,000 kilometers. Such a system would be likely to be operational by 2002, if the current program remains on schedule. Boost-phase defenses would be most useful against ICBMs aimed at Europe, but they would also offer an operational alternative to interceptors intended for North America.

In contrast, a defense against ICBMs entering the atmosphere (i.e. a "slam" defense) would be more difficult to develop. Such a system would have to be designed to destroy any remnants of the ICBM, including any MIRVs or multiple warheads. In addition, the high pressure in the atmosphere causes the warheads to be subject to high accelerations, which makes them difficult to hit with precision.

Boost-phase defenses would be most useful against ICBMs aimed at Europe, but they would also offer an operational alternative to interceptors intended for North America. The defense against ICBMs entering the atmosphere (i.e. a "slam" defense) would be more difficult to develop. Such a system would have to be designed to destroy any remnants of the ICBM, including any MIRVs or multiple warheads. In addition, the high pressure in the atmosphere causes the warheads to be subject to high accelerations, which makes them difficult to hit with precision.

The coverage zone of the boost-phase defense would be about 1,000 kilometers beyond the location of the interceptor, for a total radius of about 4,000 kilometers. Such a system would be likely to be operational by 2002, if the current program remains on schedule. Boost-phase defenses would be most useful against ICBMs aimed at Europe, but they would also offer an operational alternative to interceptors intended for North America.

In contrast, a defense against ICBMs entering the atmosphere (i.e. a "slam" defense) would be more difficult to develop. Such a system would have to be designed to destroy any remnants of the ICBM, including any MIRVs or multiple warheads. In addition, the high pressure in the atmosphere causes the warheads to be subject to high accelerations, which makes them difficult to hit with precision.

Boost-phase defenses would be most useful against ICBMs aimed at Europe, but they would also offer an operational alternative to interceptors intended for North America. The defense against ICBMs entering the atmosphere (i.e. a "slam" defense) would be more difficult to develop. Such a system would have to be designed to destroy any remnants of the ICBM, including any MIRVs or multiple warheads. In addition, the high pressure in the atmosphere causes the warheads to be subject to high accelerations, which makes them difficult to hit with precision.