
HARDWARE THAT IS LESS UNTRUSTED:
OPEN-SOURCE DOWN TO THE SILICON

Recommended Citation
Ron Minnich, "HARDWARE THAT IS LESS UNTRUSTED: OPEN-SOURCE DOWN TO THE SILICON",
NAPSNet Special Reports, June 09, 2020, https://nautilus.org/napsnet/napsnet-specia-
-reports/hardware-that-is-less-untrusted-open-source-down-to-the-silicon/

RON MINNICH

JUNE 9, 2020

1

https://nautilus.org/napsnet/napsnet-special-reports/hardware-that-is-less-untrusted-open-source-down-to-the-silicon/
https://nautilus.org/napsnet/napsnet-special-reports/hardware-that-is-less-untrusted-open-source-down-to-the-silicon/

I. INTRODUCTION

In this essay, Ron Minnich argues: “We cannot build on a foundation that is compromised at all
levels. There is no visibility into the system’s behavior. The existing model assumes perfect software:
‘Trust, but don’t verify.’ We need to start anew, from the gates, and work our way up.”

Ron Minnich is a software engineer at Google.

The paper was prepared for the Antidotes For Emerging NC3 Technical Vulnerabilities, a Scenarios-
Based Workshop held October 21–22, 2019, and convened by the Nautilus Institute for Security and
Sustainability, Technology for Global Security, the Stanley Center for Peace and Security, and
hosted by the Center for International Security and Cooperation—Stanford University.

A podcast with Ron Minnich, Philip Reiner, and Alexa Wehsener can be found here

It is published simultaneously here by Technology for Global Security and here by the Nautilus
Institute and is published under a 4.0 International Creative Commons License, the terms of which
are found here.

Acknowledgments: The workshop was funded by the John D. and Catherine T. MacArthur
Foundation. Maureen Jerrett provided copy editing services.

The views expressed in this report do not necessarily reflect the official policy or position of
Technology for Global Security or the Nautilus Institute. We seek a diversity of views and opinions
on significant topics to identify common ground.

Banner image is by Lauren Hostetter of Heyhoss Design

II. NAPSNET SPECIAL REPORT BY RON MINNICH
HARDWARE THAT IS LESS UNTRUSTED: OPEN-SOURCE DOWN TO THE
SILICON
JUNE 9, 2020

The goal of CATALINK[1] is to build a more trustable system. What technical steps are required to
build a system that users trust is doing what the system says it is doing? The system must be trusted
all the way down to the transistors, and all of it must be open-source. This is inherently difficult,
as the computing world is far less open today than it was 20 years ago. Adding to the difficulty, as
we have learned in the last 10 years, those foundations have been completely compromised and are
full of security holes—some accidental and some malicious. How did we get from the beginnings of
computers to where we are today?

By far the computer type most commonly associated with computing is the so-called Personal
Computer (PC). The Personal Computer defines a computing standard based around a physical form.
Though these started as personal, at least a billion computers following this standard are found in
offices, data centers, automobiles, and personal electronics used around the world.

Shown below (Figure 1) is a typical PC of the 1980s—a motherboard. All the chips have an easily
identified function. There is one central processing unit (CPU), memory chips, and Input/Output (IO)
chips. And, in all this hardware, there is software. The software is contained in the larger chips with
round white labels on the top, which blocks ultraviolet (UV) light from erasing the software. The

2

https://soundcloud.com/tech4gs
https://www.tech4gs.org/last-chance-communicating-at-the-nuclear-brink.html
https://nautilus.org/?p=98281
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://heyhoss.design/

software on those chips is called firmware, since it is software that is still there even when power is
turned off. Firmware is less “hard” than hardware, since it is changeable software, yet “harder” than
software, since it is persistent when power is removed and reapplied. When this board was created,
anyone could write software to go in those chips because all the information and resources to do so
were openly available.

Figure 1. A 1980s motherboard

Today’s situation is drastically different. Shown below is a more recent motherboard (Figure 2).
Some of the smallest chips on that motherboard—1 centimeter (cm) by 1 cm—are more complex
than the entire motherboard shown above. Some of these chips contain 1,000 times as much
firmware as the motherboard shown above, and like in the motherboard above, all are vulnerable to
supply chain attacks. This firmware is difficult, if not impossible, to change once it is installed. The
source is only available under the strictest nondisclosure agreements. Moreover, there is no way to
verify the firmware on this board is doing what it should do, or that it is not doing what it should not
do. The model of this proprietary firmware is, “trust, but don’t verify.” This model has proven too
ineffective for operational security.

It has been demonstrated that it is possible to attach wires to the board, trace activity, and reverse
engineer the software from those activity traces.[2] From there, it is not a significant leap to
inserting malicious software. It would be even easier to modify the software somewhere in the
supply chain; for instance, when the software is written, the board is built, or the board is en route
to the final customer. Modifying software in this manner is called a supply chain attack.

Figure 2. A modern motherboard

3

While there are many CPUs on this board, the most well-known is the main CPU—the x86. The x86 is
the most visible to the user because it runs Windows or Linux, which in turn runs all the applications
users use. The x86 has firmware, called UEFI. It is as complex in many ways as Linux or Windows.
UEFI is generally only released in binary form, and hence unverifiable: “Trust, but don’t verify.”
Many security researchers have decoded UEFI for fun, however, and criminals have likewise done so
for profit. A search for “UEFI exploits” reveals an astounding 204,000 results. As a result, in any
given week there are many active exploits, some of the most recent being this year.[3]

We cannot build on a foundation that is compromised at all levels. There is no visibility into the
system’s behavior. The existing model assumes perfect software: “Trust, but don’t verify.” We need
to start anew, from the gates, and work our way up. But what does this new model look like?

Shown below (Figure 3) is a new board called the HiFive, from SiFive. SiFive is a new startup that is
designing and selling RISCV (pronounced “risk five”) CPUs. RISCV is an open, unlicensed
architecture. This means that companies wishing to build RISCV chips do not need to pay a license
fee or ask permission. RISCV is a specification managed by the RISCV foundation, originally based in
the United States, and now based in Switzerland. The RISCV specification is a definition of how the
CPU must work and not a CPU itself. Other companies such as Nvidia, Western Digital, and SiFive
build the CPU itself. Today, there are also open-source implementations of RISCV available at places
like GitHub.

Figure 3: HiFive motherboard

4

Open-source CPUs do not benefit from the 50 years of continuous performance gains achieved in the
proprietary world. The HiFive board costs $1,000. In contrast, a nearly ten times more powerful x86
board costs a mere $30. Compared to proprietary systems, the open-source performance-to-price
ratio is 300 times less.

Note that RISCV is not behind in every way; far from it. RISCV processors, being new, can be
designed to avoid the kind of security problems that have plagued older CPUs in recent years. They
have extremely low power consumption and are arguably more power efficient than even ARM[4]
which makes them practical for CATALink; a modern x86 processor is too power-hungry and hot.
Because there is not a per-core license, and the cores are so compact, RISCV processors are not

5

artificially constrained to small numbers of cores—a recent system has 1049 cores, far more than
any x86 processor offers today. Finally, there are some very cheap low-end RISCV 32-bit systems
available today; in one case, one can buy a board for five dollars ($5).[5] All that said, however, the
highest-throughput RISCV CPU is at least ten times slower than a medium-throughput x86.

To effectively and efficiently run on RISCV, software needs to accommodate itself to constraints not
seen since the early 2000s. CATALINK software must be efficient and thrifty. We will need new
software, therefore, to accommodate these old constraints.

The requirement to write new software, rather than just taking what exists today, is an advantage.
This process will give us a chance to write software designed for security as a top priority. Were we
to simply take the RISCV hardware and drop existing software onto it, our system might still be
unreliable and insecure. The problem is that much software is written in C. It is well known to be a
problematic language when security problems are concerned. Further, most software is written to
optimize features and speed instead of security.

In addition to the hardware issues previously discussed, we need to start anew on the software stack
and consider modern programming languages with integrated safety attributes. For example, many
projects are using a new language called Rust. It has many features to ensure safe programming and
minimize the resource usage of the code. Other languages, such as Spark,[6] are designed for formal
verification, in which automated programs verify that the software does what it should.

The programming language will not on its own ensure a verifiably secure system. The rules for
writing safe software are well understood yet rarely followed. CATALINK will need rigorous controls
to ensure software “follows the rules.” These controls must be automated. One example of
automated checking demonstrates how the “Go report card,” generated by an automated system,
grades the code quality continuously.[7] Another automation example is the Coverity code.[8]
Coverity scans 6,700 projects for code quality.

CATALINK can build on the foundation of the entirely open RISCV. Starting with that foundation, we
can build new software in modern languages, such as Rust, that let us provide the assurance that the
software does what it should and does not do what it should not. Further, for all the components of
CATALINK, we can adhere to a “Trust, but Verify” model—a far superior alternative to the models
we have today.

III. ENDNOTES

[1]See: See: NAUTILUS INSTITUTE, STANLEY CENTER FOR PEACE AND SECURITY, AND
TECHNOLOGY FOR GLOBAL SECURITY, "LAST CHANCE: COMMUNICATING AT THE NUCLEAR
BRINK, SCENARIOS AND SOLUTIONS WORKSHOP, SYNTHESIS REPORT", NAPSNet Special
Reports, May 23, 2020, https://nautilus.org/napsnet/napsnet-special-reports/last-cha-
ce-communicating-at-the-nuclear-brink-scenarios-and-solutions-workshop-synthesis-report/

[2]Andrew Huang, Hacking the Xbox: An Introduction to Reverse Engineering, No Starch Press, July
1 2003, updated March 2013, available at: https://nostarch.com/xboxfree

[3]“Through the SMM-Class and a Vulnerability Found There,” SYNACKTIV Digital Security, January
14, 2020, available at: https://www.synacktiv.com/posts/exploit/through-the-smm-class--
nd-a-vulnerability-found-there.html

[4]Available at: https://www.datacenterknowledge.com/hardware/open-source-risc-v-ready-take-
intel-amd-and-arm-data-center

6

https://nautilus.org/napsnet/napsnet-special-reports/last-chance-communicating-at-the-nuclear-brink-scenarios-and-solutions-workshop-synthesis-report/
https://nautilus.org/napsnet/napsnet-special-reports/last-chance-communicating-at-the-nuclear-brink-scenarios-and-solutions-workshop-synthesis-report/
https://nostarch.com/xboxfree
https://www.synacktiv.com/posts/exploit/through-the-smm-class-and-a-vulnerability-found-there.html
https://www.synacktiv.com/posts/exploit/through-the-smm-class-and-a-vulnerability-found-there.html
https://www.datacenterknowledge.com/hardware/open-source-risc-v-ready-take-intel-amd-and-arm-data-center
https://www.datacenterknowledge.com/hardware/open-source-risc-v-ready-take-intel-amd-and-arm-data-center

[5]Available at: https://www.datacenterknowledge.com/hardware/open-source-risc-v-ready-take-
intel-amd-and-arm-data-center

[6]The German Spark, not the Berkeley Spark. See:
https://en.wikipedia.org/wiki/SPARK_(programming_language)

[7] At: U-Root/u-Root, Go (2015; repr., u-root, 2020), at: https://github.com/u-root/u-root

[8] At: “Coverity Scan - Static Analysis,” Synopsys, accessed May 18, 2020,
https://scan.coverity.com/

IV. NAUTILUS INVITES YOUR RESPONSE

The Nautilus Asia Peace and Security Network invites your responses to this report. Please send
responses to nautilus@nautilus.org. Responses will be considered for redistribution to the network
only if they include the author’s name, affiliation, and explicit consent.

View this online at: https://nautilus.org/napsnet/napsnet-special-reports/hardware-that-is-
less-untrusted-open-source-down-to-the-silicon/

Nautilus Institute
608 San Miguel Ave., Berkeley, CA 94707-1535 | Phone: (510) 423-0372 | Email:
nautilus@nautilus.org

7

https://www.datacenterknowledge.com/hardware/open-source-risc-v-ready-take-intel-amd-and-arm-data-center
https://www.datacenterknowledge.com/hardware/open-source-risc-v-ready-take-intel-amd-and-arm-data-center
https://en.wikipedia.org/wiki/SPARK_(programming_language)
https://github.com/u-root/u-root
https://scan.coverity.com/
mailto:nautilus@nautilus.org

