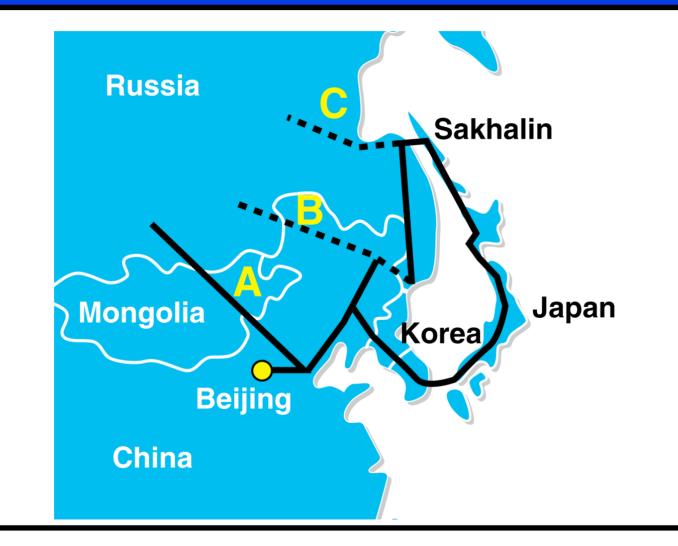
Environmental Aspects of Electricity Grid Interconnection in Northeast Asia

David Streets


Argonne National Laboratory

Workshop on Power Grid Interconnection in Northeast Asia

Beijing, China

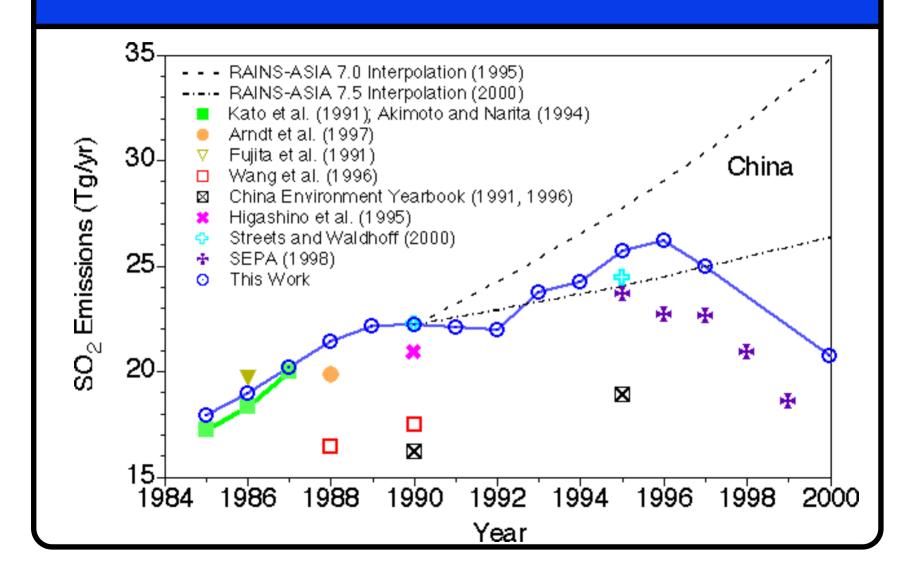
May 14-16, 2001

Developments in Power Sector Energy Use (PJ)							
	<u>Year 2000</u>			<u>Ye</u>	ar 2020		
	<u>coal</u>	oil	gas	<u>coal</u>	oil	gas	
NE Plains/PRC	1505	189	18	2347	110	140	
DPRK	199	0	0	480	0	0	
ROK	752	362	230	1237	339	730	
Japan	1784	1703	1757	3161	1271	1281	

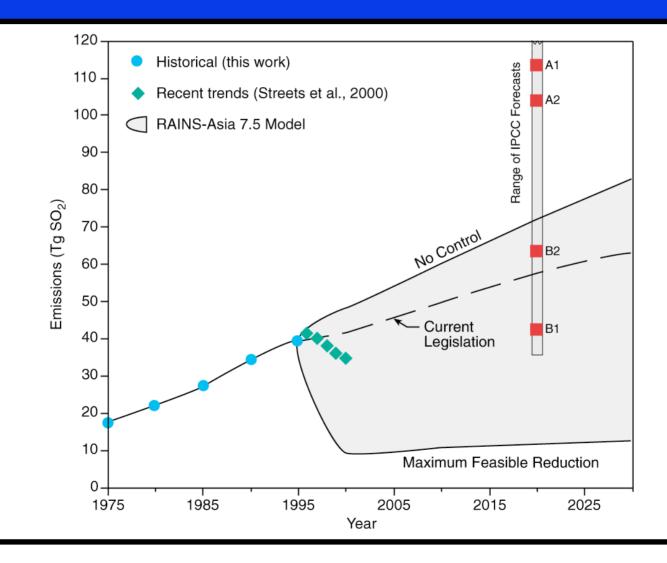
Environmental Benefits of Increased Grid Interconnection

- Reduced emissions of local air pollutants
- Reduced human exposure to ambient pollution, due to the separation of source and end-use
- Potential reductions in long-range pollutant transport and regional problems like acid rain, ozone, etc.
- Potential reductions in greenhouse-gas emissions
- Reduced coal mining and coal transportation
- Opportunity to displace biofuel combustion in rural areas
- Opportunity to enhance the use of renewable energy, such as hydroelectricity
- Encouragement of harmonized environmental regulations

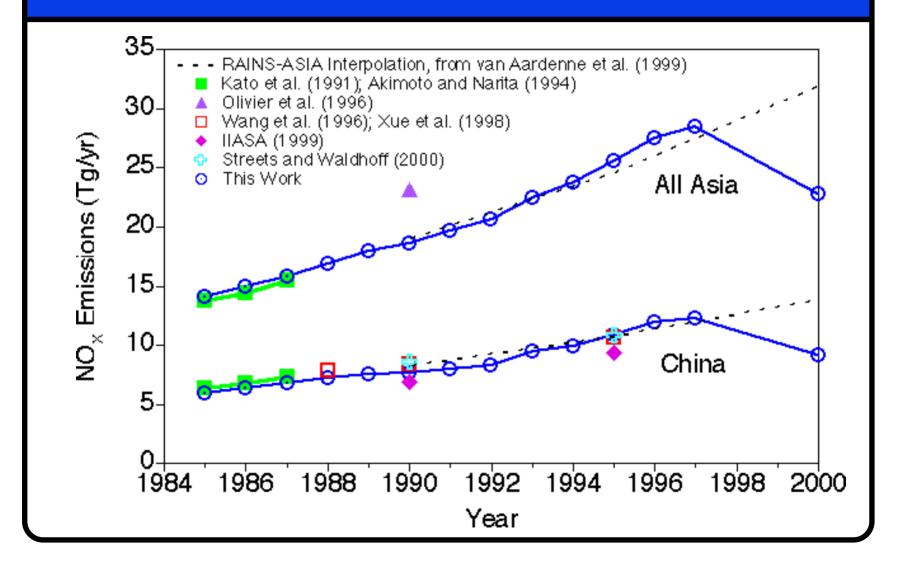
Potential Environmental Dis-benefits


- Increased combustion emissions at point of electricity generation
- Increased methane emissions from natural gas extraction, processing, and distribution
- Possible marine ecosystem damage from offshore gas extraction and undersea cables
- Possible human health and ecosystem effects from transmission lines
- Environmental effects of alternative energy sources (nuclear, hydro, wind...)

There Has Been a Remarkable Change in Air Pollution Emissions in China Since 1995, Due to:


- The economic downturn in 1997-98 in East and Southeast Asia
- Reform of industry and power, leading to a reduction in coal use
- Structural shift away from heavy industry towards high-tech industries and services
- Improvements in energy efficiency and fuel quality
- Closing of many small, inefficient, high-sulfur coal mines, reducing the over-supply of coal
- Slowdown in electricity demand, due to higher electricity prices
- Opening up of power and industrial markets
- Residential fuel switching from coal to electricity and gas in (large) cities

Question: Are recent energy-use reductions overstated??


Recent SO₂ Emission Trends in China

Future SO₂ Emissions in Asia

Recent NO_x Emissions Trends

Electricity Generation in Northern China in 1999 (TWh)						
Beijing	14.3	Tianjin	18.1			
Nei Mongol	38.1	Liaoning	61.0			
Jilin	30.0	Heilongjiang	41.2			
Northern China	202.7 (16.4%)					
All China	1239.3					
Irkutsk Irkutsk + C	RC, potential electrici Chita Chita + Yakutia	ty supply from: 15 (by 2005-20 25-30 (by 2005- 40-50 (beyond	-2010)			

Typical Emission Factors (Gg/PJ) from Power Generation

	SO ₂	SO ₂ *	NO _x	CO	BC**	CO ₂
coal	0.61	0.06	0.30	0.02	0.00001	96
oil	0.26	0.07	0.20	0.02	0.008	77
gas	0.01	0.01	0.15	0.03	0	56
[coal]	0.51	0.07	0.08	3.5	0.18	96
[biofuel]	0.06	0.06	0.05	5.1	0.07	110

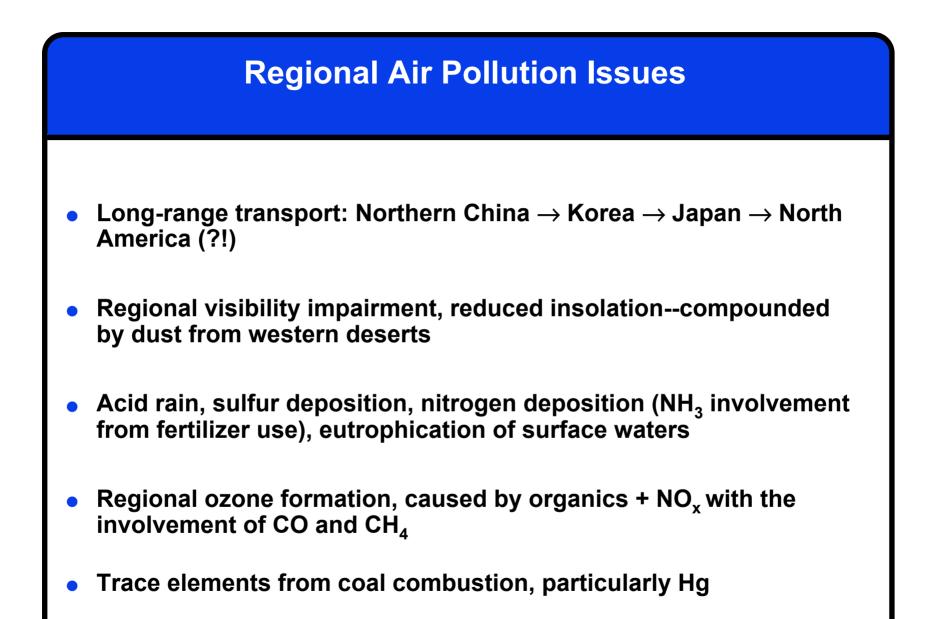
*with controls, such as FGD for coal, low-sulfur oil, briquettes, etc.

**black carbon, i.e., sub-micron elemental carbon

[...] = residential fuel use

Local Air Quality Benefits

- Existing power plants are co-located with urban centers, are largely coal-fired, and typically only have electrostatic precipitators for control of particulate matter (no S control)
- They are a major source of SO₂ and PM, and a significant source of NO_x
- Thus, they contribute to the high ambient levels of pollution in northern Chinese cities, which impair human health, largely through inhalable PM (primary particles and sulfate, though ambient SO₂ is a health danger in some cities)
- Displacement of existing and/or planned coal-fired power plants with imported electricity would contribute to air-quality improvement and reduction in health damage
- In Shanghai, we have estimated benefit/cost ratios of 1-4 for control of SO₂ and PM from the power sector (4-12 for the industrial sector)


Air Quality in Selected Northern Chinese Cities

Annual Daily Average Concentrations in 1995 (:g/m³)

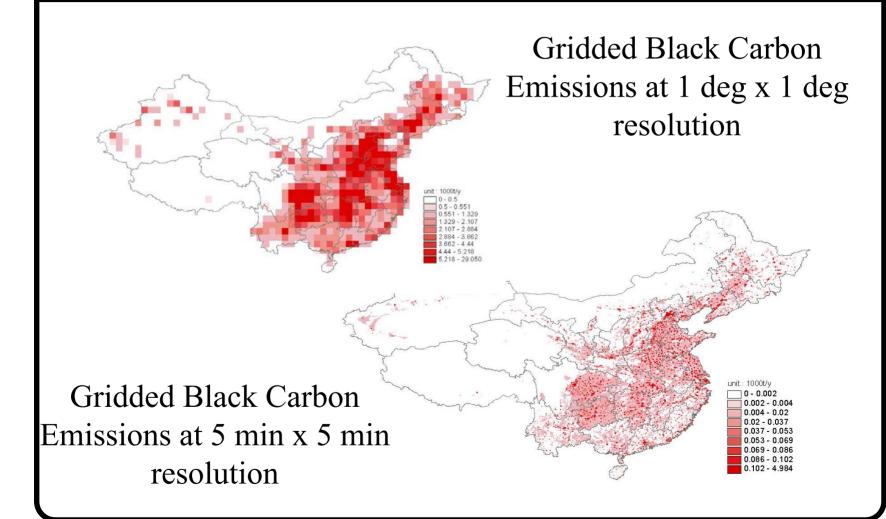
	NO _x	SO ₂	TSP
Beijing	122	90	377
Changchun	64	21	381
Dalian	100	61	185
Harbin	30	23	359
Lanzhou	104	102	732
Shenyang	73	99	374
Shijiazhuang	61	129	308
Taiyuan	55	211	568
Tianjin	50	82	306
WHO Guidelines	150	100-150	150-230

Change in Mortality due to PM Control in Shanghai

Year 2020 Power Sector Industrial Sector Em ission Reduction (%) SO2 41 14 NOx 13 6 TSP 3 9 PM 10 4 12 PM 2.5 4 13 Benefits (\$ m illions) Mortality 257 188 Morbidity 148 108
SO2 41 14 NOx 13 6 TSP 3 9 PM 10 4 12 PM 2.5 4 13 Benefits (\$ m illions) 257 188
NOx 13 6 TSP 3 9 PM 10 4 12 PM 2.5 4 13 Benefits (\$ m illions) 257 188
TSP 3 9 PM ₁₀ 4 12 PM _{2.5} 4 13 Benefits (\$ m illions) 257 188
PM 4 12 PM 2.5 4 13 Benefits (\$ m illions) 257 188
PM 4 13 Benefits (\$ m illions)
Benefits (\$ m illions)Mortality257188
Benefits (\$ m illions)Mortality257188
Morbidity 148 108
Costs (\$ m illions) 395 94
Health Benefits/Costs 1.03 3.15
Ratio

Without Additional Control Measures, Deposition Levels Will Cause Widespread Damage by the Year 2020

Regional Sulfur Source-Receptor Relationships						
Receptor/Source	NEP	Jiangs	u Japan	DPRK	ROK	
Shenyang, PRC	66	1	0	1	1	
Beijing, PRC	0	1	0	0	0	
Tokyo, Japan	2	2	78	1	9	
Pyongyang, DPRK	17	3	0	29	37	
Seoul, ROK	4	3	0	2	84	


Combustion Devices in Xian, China

Photos courtesy of Beverly Anderson

Black Carbon Emissions in China

Global Issues

- Potentially reduced emissions of greenhouse gases (CO₂ mainly)
- Reduction depends on the technology and fuel used to generate the electricity at the source
- Emissions of CH₄ could increase if natural gas is the source (from extraction, processing, and distribution
- Issues related to the Kyoto Protocol (Japan required to reduce emissions by 6% from 1990 levels; China not a party to the agreement)
- Recent ghg emission trends in China have broad implications

Conclusion: Regional Grid Interconnections are Likely to Provide Net Environmental Benefits

- Local benefits to human health in some northern Chinese cities could be significant; also possible for DPRK and ROK
- Health benefits at point of electricity use are likely to outweigh ecosystem dis-benefits at point of electricity generation
- Regional air-quality benefits are likely to be positive but small
- Global benefits are likely to be positive but very small; Japan could benefit
- Social benefits to northern China and DPRK will be significant
- Amount of electricity likely to be available is relatively small to have a really large effect