# Energy Security of Northeast Asia: Current State, Energy Demand/Supply Projection and Investment Needs

Jinwoo Kim

Director Center for Energy Research, Northeast Asia Korea Energy Economics Institute

> prepared for KEEI-IEA Joint Conference Seoul, March 16~17, 2004

# Contents

**Current Energy State in NEA** 

- **Energy Security Issues in NEA**
- Energy Demand/Supply Projection
  - **Investment Needs for Energy Infrastructure**
- Envisaged Strategies and Framework
  Concluding Remark



## [Overview of NEA Energy Situation]

- Only 6 Countries But a Significant Group
- 27% of world population, 19% of world GDP
- 25% of world energy consumption
- 18% of world CO<sub>2</sub> emissions
- Faster growth of economy & energy demand than other regions

| (Year 2000)                                  | South<br>Korea | Japan | China   | Russia | Mon-<br>golia | North<br>Korea | NEA   | World |
|----------------------------------------------|----------------|-------|---------|--------|---------------|----------------|-------|-------|
| Primary Energy<br>(10 <sup>6</sup> TOE)      | 192.9          | 558.7 | 950.0   | 612.0  | 2.6           | 15.7           | 2,332 | 9,179 |
| Per Capita Energy<br>(TOE/person)            | 4.08           | 4.40  | 0.75    | 4.21   | 1.03          | 0.71           | 1,44  | 1.51  |
| Energy/GDP<br>(TOE/ 10 <sup>6</sup> \$, '95) | 312            | 105   | 912     | 1,751  | n.a.          | 735            |       |       |
| Population (10 <sup>6</sup> )                | 47.3           | 126.9 | 1,273.0 | 145.5  | 2.5           | 22.0           | 1,617 | 6,075 |

### [Energy Mix of China]

- Dominance of coal (62.0%)
- Small portion of natural gas (3.0%)

#### **Primary Energy Consumption (2001)**

|                   | Primary Energy Consumption<br>(million TOE) | %     |
|-------------------|---------------------------------------------|-------|
| Oil               | 231.9                                       | 27.6  |
| Natural Gas       | 24.9                                        | 3.0   |
| Coal              | 520.6                                       | 62.0  |
| Nuclear Energy    | 4.0                                         | 0.5   |
| Hydro-Electricity | 58.3                                        | 6.9   |
| Total             | 839.7                                       | 100.0 |

Source : BP Statistical Review of World Energy, June 2002.

### [Energy Mix of Japan]

- Relatively high nuclear dependency (14.1%)
- Big oil and natural gas importer

#### **Primary Energy Consumption (2001)**

|                   | Primary Energy Consumption<br>(million TOE) | %     |
|-------------------|---------------------------------------------|-------|
| Oil               | 247.2                                       | 48.0  |
| Natural Gas       | 71.1                                        | 13.8  |
| Coal              | 103.0                                       | 20.0  |
| Nuclear Energy    | 72.7                                        | 14.1  |
| Hydro-Electricity | 20.4                                        | 4.0   |
| Total             | 514.5                                       | 100.0 |

Source : BP Statistical Review of World Energy, June 2002.

### [Energy Mix of S. Korea]

- High oil dependency, rapid growing natural gas consumption
- Big energy importer (overseas energy dependency 97.3%)

  - Import Bill: US\$33.7 billion (23.9% of total import bill)
    3<sup>rd</sup> largest oil importer, 2<sup>nd</sup> largest coal and LNG importer

#### **Primary Energy Consumption (2001)**

|                   | Primary Energy Consumption<br>(million TOE) | %     |
|-------------------|---------------------------------------------|-------|
| Oil               | 103.1                                       | 52.6  |
| Natural Gas       | 20.8                                        | 10.6  |
| Coal              | 45.7                                        | 23.3  |
| Nuclear Energy    | 25.4                                        | 13.0  |
| Hydro-Electricity | 0.9                                         | 0.5   |
| Total             | 195.9                                       | 100.0 |

Source : BP Statistical Review of World Energy, June 2002.

## [Energy Security – A New Angle]

- **Quantity Risk (traditional focus)** 
  - Political or strategic energy supply disruption
- Price Risk + Quantity Risk
  - Short-term supply shortage  $\Rightarrow$  Price shocks
- Environmental Risk + Price Risk + Quantity Risk
  - Economic vulnerability to environmental sanctions
- ⇒ "Energy Security" : Stable, Cost-Effective and Sustainable Supply of Energy

Set up an efficient and environment-friendly energy supply system
 + emergency preparedness + international cooperation

## [Dimensions of Energy Security]

#### Energy Supply Security

- Traditional Concern of Securing Stable Energy Supply
  - Import source and fuel diversification
  - · Contract flexibility, reliable delivery routes & system
  - Domestic infrastructure integrity & storage
  - · Participation in resource development, ...

#### Energy Economic Security

- Broader Perspective of Fortifying Economic Security from Energy Instability
  - · Reduce vulnerability to price volatility
  - Enhance energy efficiency
  - · Market liberalization, minimize impacts from environmental issues, ...

#### • Energy for Security

- Geopolitical Aspect of Energy
  - · Energy as a catalyst for international economic cooperation
  - Easing international tensions

## [Factors Threatening NEA Energy Security]

- Rapid Growth of Energy Demand
  - Annual growth rate for 1999~2020 (EIA forecast): China 4.7%, South Korea 2.8%, World Average 2.2%
- Growing Dependency on Oil
  - Oil becoming the leading primary energy in NEA: Japan (2nd largest consumer), China (3rd), South Korea (6th)
  - Increasing Import from Outside the Region
    - 76% of NEA oil imports from the Middle East in 1999: Japan (86%), S.Korea (72%), China (46% 79% in 2020)

#### **Vulnerability to Environmental Issues**

- High dependency on coal (China 64%) and oil (S. Korea 51%, Japan 50%, China 30%)

## [Why Energy Cooperation in NEA?]

- Strengthen Energy Security
  - Import source & fuel diversification
  - Emergency preparedness : less vulnerable to external shocks

#### **Economic Benefits**

- Resource development
- Cost-effective energy supply
- Spill-over effects : steel industry, construction, employment....
- Market liberalization

### **Environment-Friendly Energy Mix**

- Wider access to environment-friendly energy (natural gas, hydro power)

## [Obstacles to NEA Energy Cooperation]

### Political and Institutional Obstacles

- Relations among the countries within NEA & Inter-Korean tension

- Uncertainty in investment and market conditions, esp. in transitional economies

#### **Economic Obstacles**

- Financing of huge investment costs
- Competition with other energy projects outside of NEA

#### **Geographical/Technological Obstacles**

- Technological difficulties in the tundra area

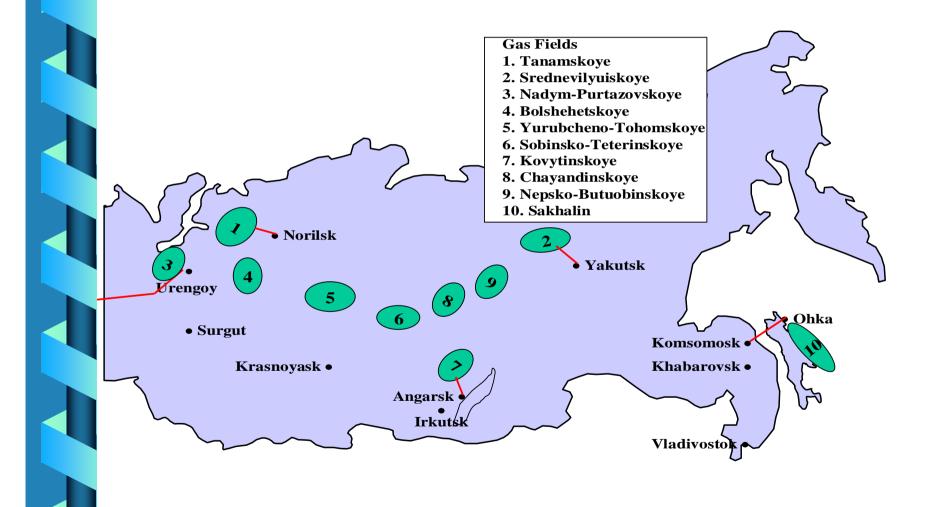
### ⇒ Much to be done & requires concerted efforts

# **Energy Demand/Supply Projection**

## [Energy Demand Forecast by Country]

|                        | year               | South<br>Korea | Japan | China  | Russia | Mon-<br>golia | North<br>Korea | NEA           | World  |
|------------------------|--------------------|----------------|-------|--------|--------|---------------|----------------|---------------|--------|
|                        | 2000               | 192.9          | 558.7 | 950.0  | 612.0  | 2.6           | 15.7           | 2332          | 9,179  |
| 10 <sup>6</sup><br>TOE | 2020               | 311.8          | 586.0 | 1707.0 | 841.0  | 3.7           | 65.3           | 3515          | 13,167 |
|                        | % (Ave.<br>Growth) | 2.2            | 0.2   | 3.0    | 1.6    | 1.8           | 7.4            | <b>2</b> ,1   | 1.8    |
| Share                  | 2000               | 8.3            | 24.0  | 40.7   | 26.2   | 0.1           | 0.7            | 25.4<br>100.0 | 100.0  |
| (%)                    | 2020               | 8.9            | 16.7  | 48.6   | 23.9   | 0.1           | 1.9            | 26.7<br>100.0 | 100.0  |

Source : IEA, KEEI


# **Energy Demand/Supply Projection**

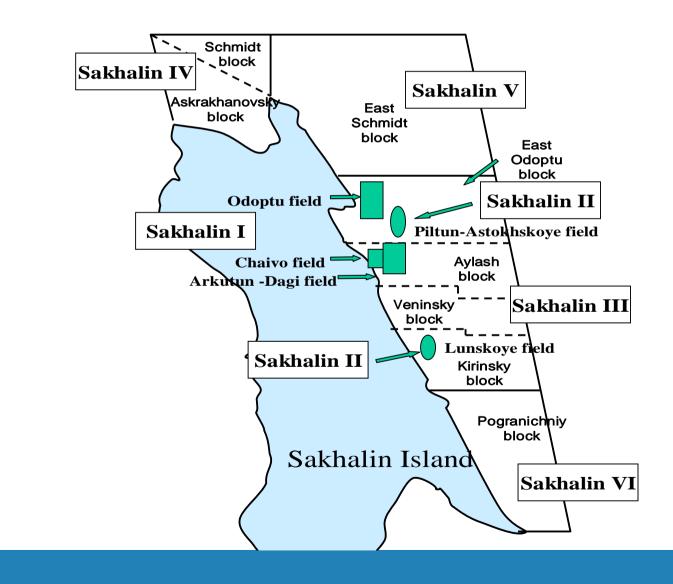
## [Energy Demand Forecast by Fuel]

|                                | Year        | Coal            | Oil             | Gas             | Elec.          | Others       | Total              |
|--------------------------------|-------------|-----------------|-----------------|-----------------|----------------|--------------|--------------------|
| NEA<br>(10 <sup>6</sup> TOE)   | 2000        | 926             | 757             | 441             | 191            | 15           | 2,332              |
|                                | 2020<br>(%) | 1,390<br>(39.5) | 1,065<br>(30.3) | 717<br>(20.4)   | 312<br>(8.9)   | 31<br>(0.9)  | 3,515<br>(100.0)   |
| World<br>(10 <sup>6</sup> TOE) | 2000        | 2,355           | 3,604           | 2,085           | 902            | 233          | 9, <del>1</del> 79 |
|                                | 2020<br>(%) | 3,128<br>(23.8) | 5,003<br>(38.0) | 3,531<br>(26.8) | 1,046<br>(7.9) | 457<br>(3.5) | 13,167<br>(100.0)  |

Source : IEA, KEEI

## <East Siberia · Far East Gas Fields>




## <East Siberia Oil & Gas Fields>

| Oil Cog Fields         | Oil (10 <sup>6</sup> | TOE)  | Natural G | as (bcm) |
|------------------------|----------------------|-------|-----------|----------|
| Oil, Gas Fields        | A+B+C1               | C2    | A+B+C1    | C2       |
| Krasnoyarsk            |                      |       |           |          |
| Yurubcheno-Tokhomskoye | 58.4                 | 301.1 | 93.7      | 321.2    |
| Sobinskoye             | 3.0                  | 8.2   | 138.7     | 19.6     |
| Irkutsk                |                      |       |           |          |
| Verkhne-Chonskoye      | 159.5                | 42.1  | 11.7      | 83.8     |
| Kovyktinskoye          | -                    | -     | 296.7     | 1100.7   |
| Sakha (Yakutia)        |                      |       |           |          |
| Talakanskoye           | 106.1                | 18.1  | 35.5      | 18.6     |
| Chayandinskoye         | 9.9                  | 23.1  | 164.8     | 44.7     |
| Srednebotuobinskoye    | 54.4                 | 11.9  | 152.3     | 18.6     |
| Srednevilyuiskoye      | -                    | -     | 160.0     | -        |
| Srednetyungskoye       | -                    | -     | 156.2     | 9.2      |

# <Sakhalin Oil & Gas Fields>

| Oil Cog Fields                                                                | <b>Oil</b> (10 <sup>6</sup> '      | TOE)                               | Natural Gas (bcm)                      |                                      |  |
|-------------------------------------------------------------------------------|------------------------------------|------------------------------------|----------------------------------------|--------------------------------------|--|
| Oil, Gas Fields                                                               | A+B+C1                             | C2                                 | A+B+C1                                 | C2                                   |  |
| Piltun-Astokhskoye<br>Lunskoye<br>Arkutun-Daginskoye<br>Chaivo<br>Odoptu-More | 84.9<br>2.6<br>9.1<br>18.2<br>38.1 | 24.2<br>5.2<br>104.3<br>1.3<br>4.4 | 58.9<br>324.5<br>22.0<br>113.9<br>58.1 | 19.3<br>59.6<br>46.2<br>26.6<br>26.2 |  |

## <Sakhalin Projects>

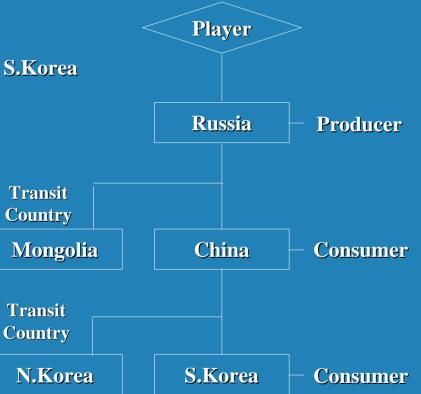


# <Sakhalin Projects>

| Projects                                    | Reserve<br>(10 <sup>6</sup> TOE) | Consortium                                                      |
|---------------------------------------------|----------------------------------|-----------------------------------------------------------------|
| Sakhalin I                                  | 1000                             | Exxon:30%, Sodeco:30%, SMNG-Shelf:23%,<br>Roseneft-17%          |
| Sakhalin II                                 | 850                              | Sakhalin energy: 25%, Royal Dutch Shell: 55%,<br>Mitsubishi:20% |
| Sakhalin III<br>Kirin Block                 | 1500                             | ExxonMobil:33%, Rosneft:33%,<br>Texaco:33%                      |
| Sakhalin III<br>Ayash,<br>East Odoptu Block | 600                              | ExxonMobil, Rosneft, Rosneft-SMNG                               |
| Sakhalin IV                                 | 700                              | Rosneft:50%, Rosneft-SMNG:50%                                   |
| Sakhalin V                                  | 600                              | TBA (BP, Rosneft expected)                                      |
| Sakhalin VI                                 | 350                              | TBA (Rosneft, ExxonMobil, Texaco expected)                      |

## <Prospective PNG Projects>

#### **4** Irkutsk : 3 routes


Russia- China- S. Korea Russia- Mongolia- China- N.Korea- S.Korea Russia- China- N.Korea- S.Korea

### **4** Yakutsk : 2 routes

Russia- China- N.Korea Russia - N.Korea- S.Korea

## **4** Sakhalin : 3 routes

Russia- China- N.Korea- S.Korea Russia- N.Korea- S.Korea Russia- China- S.Korea



## <Natural Gas Scheme in NEA>



## <East Siberia Oil Pipeline Projects>

|                                       | Angarsk-<br>Daqing           | Angarsk-<br>Nakhodka | Pacific                    |
|---------------------------------------|------------------------------|----------------------|----------------------------|
| Suggested by                          | China(CNPC)<br>Russia(Yukos) | Transneft            | Russian Energy<br>Ministry |
| <b>Distance</b> (km)                  | 2,213                        | 3,765                | 4,000                      |
| Trans. Capacity (10 <sup>6</sup> b/d) | 0.6                          | 1.0                  | 1.8                        |
| Supported by                          | China                        | Japan                | Japan                      |
| Construction period                   | 2003-2005                    | 2007                 | n.a.                       |

Sino-Russian Energy Cooperation signed in 1996

- Supplement of production decrease at Daqing field, using Daqing facilities
- Japan's participation suggested at 2003 Japan-Russia Summit Talk
  Support 5 billion US\$, guarantee 800,000 b/d for Nakhodka route
  - Route to be decided in 2004
- Pipeline connection under review in S. Korea

## **Investment Needs for Energy Infrastructure**

### [Energy Investment Outlook : 2001~2030]

- **Developing countries require almost half of global energy investment**.
- Energy production and demand increase most rapidly.
- Share of energy investment in the economy
  - Russia : 5%+, China : 2.5%

#### **Cumulative Energy Investment (billion US\$)**

|        | 2001~2010 | 2011~2020 | 2021~2030 | 2001~2030 |
|--------|-----------|-----------|-----------|-----------|
| Russia | 269       | 391       | 389       | 1,050     |
| China  | 578       | 787       | 888       | 2,253     |

Source: IEA, World Energy Investment Outlook

## Investment Needs for Energy Infrastructure

### [Estimated Investment Needs for NEA Energy Projects]

| Gas Project                                | Investment<br>(billion US\$) | Oil Project          | Investment<br>(billion US\$) |
|--------------------------------------------|------------------------------|----------------------|------------------------------|
| Sakhalin I                                 | 12.0~15.2                    | Angarsk-Daqing       | 1.7                          |
| Sakhalin II                                | 10.0                         | Angarsk-<br>Nakhodka | 5.2                          |
| Sakhalin III<br>Kirin Block                | 15.0                         | Pacific              | 11.0                         |
| Sakhalin III<br>Ayash<br>East Odoptu Block | 13.5                         |                      |                              |
| Sakhalin V                                 | 33.0                         |                      |                              |
| Irkutsk                                    | 11.0~16.0                    |                      |                              |

## **Investment Needs for Energy Infrastructure**

## [Issues of Financing Energy Investment]

- Cannot be taken for granted
  - Financial resources at a global level are not deficient.
  - Risks faced by investors are formidable and are changing.

Financing in developing countries is the biggest challenge.

- High risks impede inward capital flows.
  - · Exchange-rate risks, economic/political instability
  - Uncertain legal and regulatory regimes
- Poorly developed financial markets
  ⇒ Need to create an investment framework and climate

Government action and international cooperation to lower potential barriers will be vital.

#### • Roadmap for Energy Cooperation in Northeast Asia

- Establishment of information/data sharing mechanisms
- Encourage business dialogues & participation
- Confidence building
- Development of joint policy agenda
- Creation of institutionalized frameworks for multilateral regional energy cooperation: Treaty, Charter, Regional Energy Community

#### More Dialogue Required to Address

- Political & institutional concerns
  - Investment protection treaties, Assurance of fiscal stability (tax, tariff), Dispute settlement mechanism, Harmonization of technical standards, etc.
- Governmental, commercial & research sector interchange
  - Senior Officials Meeting, Expert Forum, Business Forum

⇒ Need to share fair/transparent principle for NEA energy cooperation

#### Institutional Vehicle for Infrastructure Financing

- Finance infrastructure investment/economic development in NEA
- Mobilize international capital market for NEA infrastructure needs
- Reduce investment risks

 Inter-governmental supporting scheme for investment promotion and protection

#### **Suggested Institutional Arrangements**

- SOM, Secretariat, Working Groups and R&D body
- Formal, but non-binding (e.g., APEC)
- Policy consultation and coordination

### **Vladivostok Statement: First Agreement of Senior Officials**

- Endorsement of objectives and principles of Khabarovsk Communiqué
- Periodical meetings of Senior Officials
- Establishment of working groups : Electric Power and Interconnection, Interstate Transit of Fossil Fuels, Prospective Energy Planning and Programming
- Immediate establishment of a TFE to draft an inter-governmental consultative mechanism
- Further consultation for founding a research center for NEA cooperation

#### Imminent Issues and Suggested Direction

- Follow-up to the Vladivostok Statement needed
- Participation of China and Japan in SOM and TFE encouraged
- Good working relationship with other international/regional organizations : WTO, UNDP(TRADP), APEC(EWG), ASEAN+3, OPEC, UNCSD(WSSD), EU (ECT), Others?

- Strategies and Steps toward NEA Energy Cooperation
- Consensus building
- Consultative process
- Policy development and coordination
- Establishment of legal and institutional bases
- Implementation and investment

# **Concluding Remark**

#### • PNG Projects in NEA for 3Es

- Energy Security, Economic Benefit, Environmental Improvement

Can Provide Win-Win Opportunity for Countries in the Region
 Obstacles can be overcome by practical interests.

Much to be done & requires concerted efforts