

ATTACHMENTS

WORKPAPERS, BACKGROUND DATA, AND DETAILED RESULTS

<u>Prepared by</u> <u>David Von Hippel, Timothy Savage, and Peter Hayes</u>

Nautilus Institute for Security and Sustainable Development 125 University Avenue, Berkeley, CA 94710, USA

REVISED DRAFT, March 6, 2002

ATTACHMENT 1

WORKPAPERS AND DETAILED RESULTS:

ESTIMATED/PROJECTED ENERGY SUPPLY/DEMAND BALANCES FOR THE DEMOCRATIC PEOPLE'S REPUBLIC OF KOREA (DPRK)

NAUTILUS INSTITUTE ESTIMATED/PROJECTED ENERGY SUPPLY/DEMAND BALANCES DEMOCRATIC PEOPLE'S REPUBLIC OF KOREA (DPRK) 2002 UPDATE

ESTIMATED ENERGY BALANCE FOR THE YEAR 1990

Prepared By David Von Hippel Date Last Modified:	6/8/2002							
UNITS: TERAJOULES (TJ)	COAL & COKE	CRUDE OIL	REFINED PROD.	HYDRO/ NUCLEAR	WOOD/ BIOMASS	CHARCOAL	ELECTRICITY	TOTAL
ENERGY SUPPLY	1,355,949	110,742	26,604	76,641	376,250	-	(11,886)	1,934,300
Domestic Production	1,317,960	-		76,641	349,583			1,744,185
Imports	68,392	110,742	26,604		26,667			232,404
Exports	30,403						11,886	42,289
Inputs to International Marine Bunkers								-
Stock Changes	/			((-
	(375,470)	(110,742)	82,809	(76,641)	(10,667)	3,520	122,184	(365,007
Electricity Generation Petroleum Refining	(295,227)	(110 742)	(21,645) 104,454	(76,641)			165,600	(227,914 (6,881)
Coal Production/Preparation	(63,900)	(110,742)	104,454				(593) (8,654)	(0,88
Charcoal Production	(03,900)				(10,667)	3,520	(0,034)	(72,552
Coke Production					(10,007)	3,520		(7,147
Other Transformation								-
Own Use							(12,408)	(12,408
Losses	(16,343)						(21,761)	(38,104
FUELS FOR FINAL CONSUMPTION	980,479	-	109,413	-	365,583	3,520	110,298	1,569,293
ENERGY DEMAND	979,947	-	109,710	-	365,475	3,435	110,302	1,568,869
INDUSTRIAL SECTOR								
Industrial Sector	660,084 378,717	-	25,110	-	1,600	-	65,439 20,286	752,233 399,003
Cement	87,059		8,610				20,286 5,504	101,174
Fertilizers	23,994		0,010				18,891	42,885
Other Chemicals	11,203						6,616	17,819
Pulp and Paper	4,026						932	4,959
Other Metals	23,720						4,126	27,846
Other Minerals	-		12,600				396	12,996
Textiles	29,385		12,000				2,497	31,882
Building Materials	61,980						189	62,169
Non-specified Industry	40,000		3,900		1,600		6,000	51,500
					,		,	,
TRANSPORT SECTOR	-	-	36,413	-	1,696	-	11,533	49,643
Road			30,288		1,696			31,984
Rail	-		1,949				10,533	12,482
Water	-		1,253					1,253
Air Non-Specified			1,123 1,800				1 000	1,123 2,800
Non-Specified			1,000				1,000	2,000
RESIDENTIAL SECTOR	218,440	-	7,300	-	258,562	3,435	10,718	498,456
Urban	117,956		6,441			3,435	7,420	135,253
Rural	100,484		859		258,562		3,298	363,203
AGRICULTURAL SECTOR	9,750	-	5,005	-	44,950	-	2,572	62,277
Field Operations	0.750		2,619		44.050		907	3,526
Processing/Other	9,750		2,386		44,950		1,664	58,750
FISHERIES SECTOR	-	-	1,947	-		-	100	2,047
Large Ships	-		1,747					1,747
Processing/Other	-		200				100	300
MILITARY SECTOR	38,467	-	18,812	-	-	-	9,008	66,287
Trucks and other Transport			6,585					6,58
Armaments			2,632					2,63
Air Force			2,648					2,64
Naval Forces			6,847				10	6,84
Military Manufacturing Buildings and Other	887 37,580		100				48 8,960	93 46,64
Buildings and Other	37,580		100				8,900	40,040
PUBLIC/COMMERCIAL SECTORS	34,915		-		-		10,932	45,84
NON-SPECIFIED/OTHER SECTORS			5,700					5,700
NON-ENERGY USE	18,290		9,422		58,667			86,379
Electricity Gen. (Gross TWhe)	23.43		1.28	21.29				46.00

NAUTILUS INSTITUTE ESTIMATED/PROJECTED ENERGY SUPPLY/DEMAND BALANCES DEMOCRATIC PEOPLE'S REPUBLIC OF KOREA (DPRK) <u>2002 UPDATE</u> ESTIMATED ENERGY BALANCE FOR THE YEAR 1996

Prepared By David Von Hippel Date Last Modified:	2/21/2003							
UNITS: TERAJOULES (TJ)	COAL & COKE	CRUDE	REFINED PROD.	HYDRO/ NUCLEAR	WOOD/ BIOMASS	CHARCOAL	ELECTRICITY	TOTAL
ENERGY SUPPLY	696,725	42,503	31,159	19,160	366,811	-	(3,328)	1,153,030
Domestic Production	740,694	-		19,160	340,145			1,099,998
Imports	4,018	42,503	38,556		26,667			111,744
Exports Inputs to International Marine Bunkers	47,987						3,328	51,315
Stock Changes			7,397					7,397
ENERGY TRANSFORMATION	(241,525)	(42,503)	15,395	(19,160)	(7,787)	2,570	48,994	(244,016
Electricity Generation	(196,429)		(24,694)	(19,160)			78,981	(161,303
Petroleum Refining Coal Production/Preparation	(25.012)	(42,503)	42,503				(227) (4,863)	(227 (40,775
Charcoal Production	(35,912)				(7,787)	2,570	(4,003)	(40,775) (5,217
Coke Production					(1,101)	2,010		- (0,217
Other Transformation								-
Own Use			(2,413)				(9,649)	(12,062
Losses	(9,185)						(15,247)	(24,431
FUELS FOR FINAL CONSUMPTION	455,200	-	46,555	-	359,025	2,570	45,666	909,015
ENERGY DEMAND	455,161	-	46,547	-	358,948	2,554	45,885	909,095
INDUSTRIAL SECTOR	242,504	-	8,505	-	528	-	21,909	273,446
Iron and Steel	148,782						7,970	156,751
Cement	31,003		3,407				1,960	36,370
Fertilizers	6,515						5,130	11,645
Other Chemicals	3,697		-				2,183	5,880
Pulp and Paper Other Metals	1,329 7,828						308 1,362	1,636 9,189
Other Minerals	-		4,158				131	4,289
Textiles	9,697		1,100				824	10,521
Building Materials	20,453						62	20,516
Non-specified Industry	13,200		941		528		1,980	16,649
TRANSPORT SECTOR	-	-	14,910	-	814	-	4,670	20,394
Road			12,667		814			13,482
Rail	-		779				4,670	5,449
Water Air	-		564 899					564 899
Non-Specified			-				-	-
RESIDENTIAL SECTOR	129,927	-	2,128	-	281,951	2,554	5,885	422,445
Urban	70,160		1,916		,	2,554	4,414	79,043
Rural	59,767		213		281,951		1,471	343,402
AGRICULTURAL SECTOR	8,775	-	1,502	-	40,455	-	2,315	53,046
Field Operations Processing/Other	8,775		786 716		40,455		816 1,498	1,602 51,444
FISHERIES SECTOR			072		,		50	1,023
Large Ships	-	-	973 873	-	-	-	50	873
Processing/Other	-		100				50	150
MILITARY SECTOR	38,290	-	15,702	-	-	-	4,518	58,510
Trucks and other Transport	, -		5,735				, -	5,735
Armaments			2,290					2,290
Air Force			2,135					2,135
Naval Forces Military Manufacturing	710		5,443				38	5,443 748
Buildings and Other	37,580		- 100				38 4,480	42,160
PUBLIC/COMMERCIAL SECTORS	31,151		-		-		6,539	37,690
NON-SPECIFIED/OTHER SECTORS			-					-
NON-ENERGY USE	4,515		2,827		35,200			42,542
					00,200			
Electricity Gen. (Gross TWhe)*	15.71		0.91	5.32				21.94

*Note: Gross terawatt-hours for coal-fired plants includes output for plants co-fired with coal and heavy fuel oil.

NAUTILUS INSTITUTE ESTIMATED/PROJECTED ENERGY SUPPLY/DEMAND BALANCES DEMOCRATIC PEOPLE'S REPUBLIC OF KOREA (DPRK) <u>2002 UPDATE</u> ESTIMATED ENERGY BALANCE FOR THE YEAR 2000

Prepared By David Von Hippel 2/24/2003 Date Last Modified: UNITS: TERAJOULES (TJ) REFINED COAL & CRUDE HYDRO/ WOOD NUCLEAR BIOMASS CHARCOAL ELECTRICITY TOTAL COKE PROD OII ENERGY SUPPLY 385.716 24,796 39,996 35,449 358,572 (82 844,448 **Domestic Production** 384,185 35,449 331,906 751,540 9,318 24,796 43,005 26,667 103,786 Imports 7,788 3,009 82 10,878 Exports Inputs to International Marine Bunkers Stock Changes ENERGY TRANSFORMATION 2,534 (54,984) (24,796) 5,891 (35,449) (7,680) 29,301 (85,183 Electricity Generation (31,593) (16,278) (35, 449)45,490 (37,830 (24,796) 23,577 Petroleum Refining (147) (1,366)Coal Production/Preparation (18,627) (2,523) (21,149 Charcoal Production (7,680) 2,534 (5,146) Coke Production Other Transformation Own Use (1,408) (1,955) (3,363) Losses (4,764) (11,565) (16,329) FUELS FOR FINAL CONSUMPTION 330,732 45,887 350,892 2,534 29,219 759,265 ENERGY DEMAND 330,760 350,920 2,539 29,216 759,318 45,883 INDUSTRIAL SECTOR 152,875 11,652 327 12,612 177,465 Iron and Steel 77,301 4,141 81,442 Cement 29,531 6,490 1,867 37,889 Fertilizers 2,906 2,288 5,194 Other Chemicals 2.287 1.350 3,637 Pulp and Paper 190 1,012 822 Other Metals 842 5,684 4,842 Other Minerals 4,274 134 4,408 Textiles 5,998 6,507 510 21,088 **Building Materials** 21.024 64 Non-specified Industry 888 327 1.225 10.604 8.165 TRANSPORT SECTOR 7,717 489 3,160 11,365 Road 6 0 4 4 6 5 3 3 489 3,160 3,745 Rail 585 Water 439 -439 650 Air 650 Non-Specified RESIDENTIAL SECTOR 107.645 2.582 2.788 395,870 280,316 2.539 -Urban 1 905 2 5 3 9 2 463 65 034 58 127 280.316 330.836 Rural 49,517 677 325 AGRICULTURAL SECTOR 8,775 1 763 40.455 2 500 53 493 Field Operations 1.048 882 1.930 8,775 40,455 Processing/Other 716 1,618 51,564 FISHERIES SECTOR 808 42 849 -Large Ships 725 725 Processing/Other 83 42 125 MILITARY SECTOR 38.290 16 606 4.518 59 414 Trucks and other Transport 5,894 5,894 Armaments 2,353 2,353 Air Force 1,703 1,703 Naval Forces 6,555 6,555 Military Manufacturing 710 38 748 Buildings and Other 37,580 100 4,480 42,160 PUBLIC/COMMERCIAL SECTORS 21,249 3,597 24,846 . NON-SPECIFIED/OTHER SECTORS NON-ENERGY USE 1,926 4,755 29,333 36,015 Electricity Gen. (Gross TWhe)* 12.64 2.64 0.15 9.85

*Note: Gross terawatt-hours for coal fired plants includes output for plants co-fired with coal and heavy fuel oil.

NAUTILUS INSTITUTE ESTIMATED/PROJECTED ENERGY SUPPLY/DEMAND BALANCES DEMOCRATIC PEOPLE'S REPUBLIC OF KOREA (DPRK) <u>2002 UPDATE</u> ESTIMATED ENERGY BALANCE FOR THE YEAR 1990: REFINED PRODUCTS BY PRODUCT TYPE

Prepared By David Von Hippel Date Last Modified:	6/8/2002							
UNITS: TERAJOULES (TJ)	CRUDE OIL	GASOLINE	DIESEL	HEAVY OIL	KEROSENE & JET FUEL	LPG, REF. FUEL, NON-E.	AVIATION GAS	TOTAL
ENERGY SUPPLY	110,742	5,272	12,954	6,220	2,159	-		137,346
Domestic Production Imports Exports Inputs to International Marine Bunkers Stock Changes	110,742	5,272	12,954	6,220	2,159			- 137,346 - -
ENERGY TRANSFORMATION	(110,742)	25,314	19,344	16,932	8,843	11,627	1,080	(27,602
Electricity Generation Petroleum Refining Coal Production/Preparation Charcoal Production Coke Production	(110,742)	25,314	19,344	(21,645) 38,578	8,843	17,583	1,080	(21,645 (- - -
Other Transformation Own Use Losses						(5,956)		(5,956
FUELS FOR FINAL CONSUMPTION	-	30,586	32,298	23,152	11,002	11,627	1,080	109,744
ENERGY DEMAND	-	30,578	32,279	23,155	10,993	11,627	1,080	109,711
INDUSTRIAL SECTOR	-	-	3,500	21,610	-	-	-	25,110
Iron and Steel Cement Fertilizers Other Chemicals Pulp and Paper				8,610				- 8,610 - - -
Other Metals Other Minerals Textiles Building Materials				12,600				- 12,600 -
Non-specified Industry			3,500	400				3,900
TRANSPORT SECTOR Road Rail Water Air Non-Specified	-	22,783 22,783	11,880 7,505 1,949 627 1,800	627 627	399 399	-	724 724	36,413 30,288 1,949 1,253 1,123 1,123
RESIDENTIAL SECTOR Urban	-	-	-	-	5,096 4,237	2,204 2,204	-	7,300 6,44
Rural AGRICULTURAL SECTOR Field Operations Processing/Other		-	5,005 2,619 2,386	-	-	-	-	859 5,009 2,619 2,380
FISHERIES SECTOR Large Ships Processing/Other	-	-	1,073 873 200	873 873	-	-	-	1,94 1,74 20
MILITARY SECTOR Trucks and other Transport Armaments Air Force	-	7,794 6,477 452 494	8,820 109 2,179	45	1,798	-	356	18,81 6,58 2,63
Naval Forces Military Manufacturing		494 371	6,432	45	1,798		356	2,648 6,847 - 100
Buildings and Other PUBLIC/COMMERCIAL SECTORS			100					
NON-SPECIFIED/OTHER SECTORS			- 2,000		3,700			- 5,700
NON-SPECIFIED/OTHER SECTORS		-	2,000		3,700	9,422		9,422

SUMMARY AND COMPARISON OF RESULTS: PETROLEUM REFINING BY PRODUCT

	1990 Pr	oduction Da	ta from Jang	i, 1994	1990 Production from Balance (Note 2)				
		(Note 1)			Oil for Magne	site as Heavy	Oil for Magnesite as Crude		
	Production	Conversion	Production	Fraction	Production	Fraction	Production	Fraction	
Product	kte/yr	te/toe	ktoe/yr	of Total	ktoe/yr	of Total	ktoe/yr	of Total	
Gasoline	950	1.07	1,017	33%	605	23%	605	26%	
Diesel	1000	1.035	1,035	34%	462	17%	462	20%	
Heavy Oil	650	0.96	624	20%	922	35%	621	26%	
Kerosene/Jet Fuel	210	1.045	219	7%	211	8%	211	9%	
Other Products	165	0.96	158	5%	446	17%	446	19%	
TOTAL			3,053	100%	2,647	100%	2,346	100%	

Notes:

1 Young Sik Jang, North Korean Energy Economics, Korea Development Institute, 1994 (pp. 54, 64)

2 The "Oil for Carbide as Heavy" columns in this table present production as estimated in the refined products balance, which assumes that oil used in carbide production is heavy or residual oil. It is possible that crude oil is input to the carbide production process without previous refining. If this is the case, the refined products balance would be as shown in the second pair of columns.

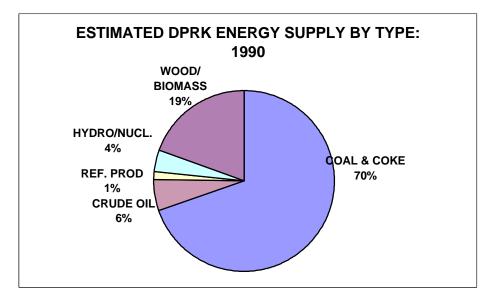
NAUTILUS INSTITUTE ESTIMATED/PROJECTED ENERGY SUPPLY/DEMAND BALANCES DEMOCRATIC PEOPLE'S REPUBLIC OF KOREA (DPRK) 2002 UPDATE ESTIMATED ENERGY BALANCE FOR THE YEAR 1996:

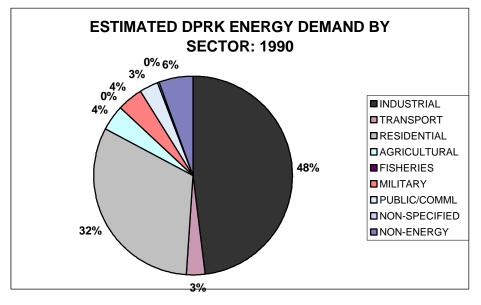
REFINED PRODUCTS BY PRODUCT TYPE

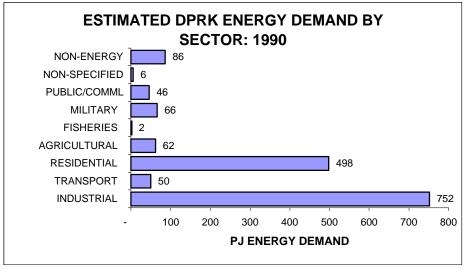
Prepared By David Von Hippel Date Last Modified:	6/6/2002							
INITS: TERAJOULES (TJ)	CRUDE OIL	GASOLINE	DIESEL	HEAVY OIL	KEROSENE	LPG, REF. FUEL, NON-E.	AVIATION GAS	TOTAL
NERGY SUPPLY	42,503	8,039	5,181	17,421	518	-	-	73,66
	,•••	-,	0,101	,				,
Domestic Production	-							-
Imports	42,503	8,039	5,181	24,818	518			81,05
Exports Inputs to International Marine Bunkers								-
Stock Changes		-	-	7,397				7,39
ENERGY TRANSFORMATION	(42,503)	8,773	8,617	(8,972)	1,723	4,381	871	(27,10
	(42,303)	0,775	0,017	(0,372)	1,725	4,001	0/1	
Electricity Generation	((0, -0, 0))			(24,694)				(24,69
Petroleum Refining	(42,503)	8,773	8,617	15,723	1,723	6,795	871	
Coal Production/Preparation Charcoal Production								-
Coke Production								_
Other Transformation								-
Own Use						(2,413)		(2,41
Losses								-
FUELS FOR FINAL CONSUMPTION	-	16,813	13,799	8,449	2,242	4,381	871	46,55
ENERGY DEMAND	-	16,836	13,768	8,449	2,242	4,381	871	46,54
		,		7.007				
INDUSTRIAL SECTOR Iron and Steel	-	-	809	7,697	-	-	-	8,50
Cement				3,407				3,40
Fertilizers								-
Other Chemicals								-
Pulp and Paper								-
Other Metals				4 4 5 0				-
Other Minerals Textiles				4,158				4,15
Building Materials								-
Non-specified Industry			809	132				94
TRANSPORT SECTOR	_	10,013	3,715	282	320		579	14,91
Road		10,013	2,654	202	520		575	12,66
Rail		10,010	779					77
Water			282	282				56
Air					320		579	89
Non-Specified			-					-
RESIDENTIAL SECTOR	-	-	-	-	574	1,555	-	2,12
Urban					361	1,555		1,91
Rural					213			21
AGRICULTURAL SECTOR	-	-	1,502	-	-	-	-	1,50
Field Operations			786					78
Processing/Other			716					71
FISHERIES SECTOR	-	-	537	437	-	-	-	97
Large Ships			437	437				87
Processing/Other			100			-		10
MILITARY SECTOR	_	6,822	7,206	34	1,348	_	292	15,70
Trucks and other Transport	-	5,640	7,200 95		1,040	-	232	5,73
Armaments		394	1,896					2,29
Air Force		494	,		1,348		292	2,13
Naval Forces		295	5,115	34				5,44
Military Manufacturing Buildings and Other			100					- 1(
-			100					
PUBLIC/COMMERCIAL SECTORS			-					-
NON-SPECIFIED/OTHER SECTORS			-		-			-
NON-ENERGY USE						2,827		2,82

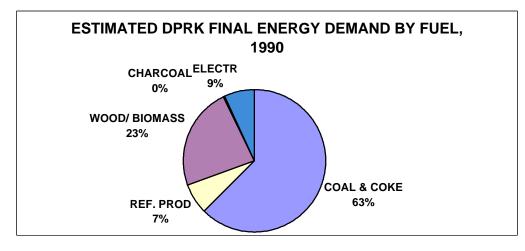
NAUTILUS INSTITUTE ESTIMATED/PROJECTED ENERGY SUPPLY/DEMAND BALANCES DEMOCRATIC PEOPLE'S REPUBLIC OF KOREA (DPRK) <u>2002 UPDATE</u> ESTIMATED ENERGY BALANCE FOR THE YEAR 2000

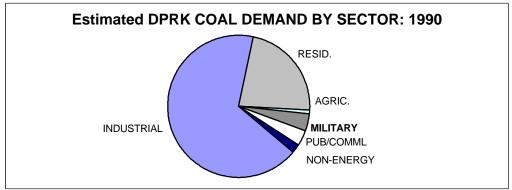
REFINED PRODUCTS BY PRODUCT TYPE

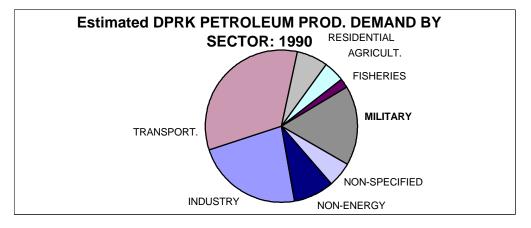

Prepared By David Von Hippel Date Last Modified:	6/8/2002]						
UNITS: TERAJOULES (TJ)	CRUDE OIL	GASOLINE	DIESEL	HEAVY OIL	KEROSENE & JET FUEL	LPG, REF. FUEL, NON-E.	AVIATION GAS	TOTAL
ENERGY SUPPLY	24,796	6,276	9,138	18,751	2,421	3,411	-	64,792
Domestic Production Imports Exports Inputs to International Marine Bunkers Stock Changes	24,796	6,276 -	9,138	21,576 2,825	2,421	3,594 183		67,801 3,009 -
ENERGY TRANSFORMATION	(24,796)	4,433	5,240	(7,128)	1,183	1,577	585	(18,905)
Electricity Generation Petroleum Refining Coal Production/Preparation Charcoal Production Coke Production Other Transformation	(24,796)	4,433	5,240	(15,407) 8,279	1,183	(870) 3,856	585	(16,278) (1,219) - - - -
Own Use Losses						(1,408)		(1,408) -
FUELS FOR FINAL CONSUMPTION	-	10,709	14,378	11,623	3,604	4,988	585	45,887
ENERGY DEMAND	-	10,678	14,379	11,630	3,622	4,988	585	45,883
INDUSTRIAL SECTOR	-	-	643	11,009		-	-	11,652
Cement Fertilizers Other Chemicals Pulp and Paper Other Metals				6,490				6,490 - - -
Other Minerals Textiles Building Materials Non-specified Industry			643	4,274 245				4,274 - 888
TRANSPORT SECTOR Road Rail Water Air	-	3,628 3,628	3,220 2,416 585 219	219 219	300 300	-	350 350	7,717 6,044 585 439 650
Non-Specified RESIDENTIAL SECTOR Urban	-	-	-	-	2,349 1,672	233 233	-	- 2,582 1,905
Rural AGRICULTURAL SECTOR Field Operations Processing/Other	-	-	1,763 1,048 716	-	677 -	-	-	677 1,763 1,048 716
FISHERIES SECTOR Large Ships Processing/Other	-	-	445 362 83	362 362	-	-	-	808 725 83
MILITARY SECTOR Trucks and other Transport Armaments Air Force Naval Forces	-	7,050 5,797 404 494 355	8,307 97 1,949 6,161	39 39	974 974	-	235 235	16,606 5,894 2,353 1,703 6,555
Military Manufacturing Buildings and Other			100					100
PUBLIC/COMMERCIAL SECTORS			-					-
NON-SPECIFIED/OTHER SECTORS			-					-
NON-ENERGY USE						4,755		4,755

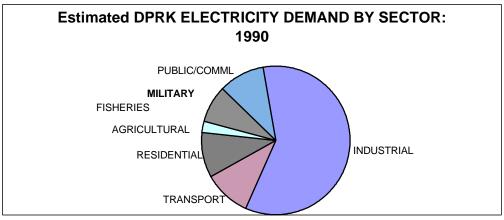

NAUTILUS INSTITUTE ESTIMATED/PROJECTED ENERGY SUPPLY/DEMAND BALANCES DEMOCRATIC PEOPLE'S REPUBLIC OF KOREA (DPRK) <u>2002 UPDATE</u>


ESTIMATED SUMMARY ENERGY BALANCE FOR 1990


Prepared By David Von Hippel Date Last Modified: 6/8/2002

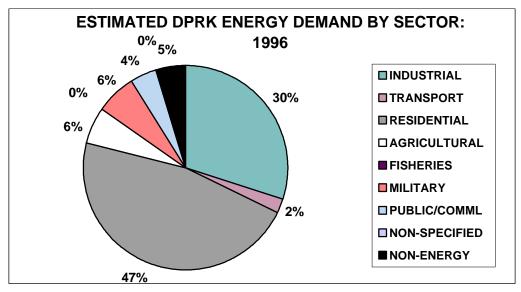

	COAL &	CRUDE	REF.	HYDRO/N	WOOD/	CHAR-		TOTAL
UNITS: PETAJOULES (PJ)	COKE	OIL	PROD	UCL.	BIOMASS	COAL	ELEC.	TOTAL
ENERGY SUPPLY	1,356	111	27	77	376	-	(12)	1,934
Domestic Production	1,318	-		77	350			1,744
Imports	68	111	27		27			232
Exports	30						12	42
Stock Changes								
ENERGY TRANSF.	(381)	(111)	89	(77)	(11)	4	111	(376)
Electricity Generation	(301)		(16)	(77)			166	(228)
Petroleum Refining	· · ·	(111)	104	· · ·				(6)
Coal Prod./Prep.							(9)	(9)
Charcoal Production					(11)	4	. ,	(7)
Own Use	(64)						(12)	(76)
Losses	(16)						(34)	(50)
FUELS FOR FINAL CONS.	974	-	115	-	366	4	99	1,558
ENERGY DEMAND	980	-	110	-	365	3	110	1,569
INDUSTRIAL	660	-	25	-	2	-	65	752
TRANSPORT	-	-	36	-	2	-	12	50
RESIDENTIAL	218	-	7	-	259	3	11	498
AGRICULTURAL	10	-	5	-	45	-	3	62
FISHERIES	-	-	2	-	-	-	0	2
MILITARY	38	-	19	-	-	-	9	66
PUBLIC/COMML	35	-	-	-	-	-	11	46
NON-SPECIFIED			6					6
NON-ENERGY	18		9		59			86
Elect. Gen. (Gr. TWhe)	23.43		1.28	21.29				46.00

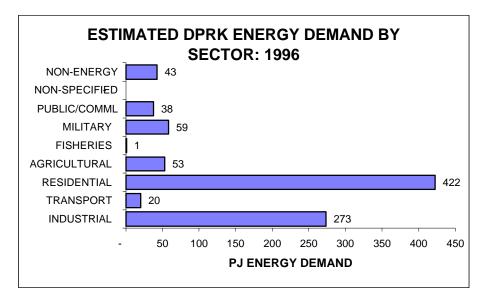


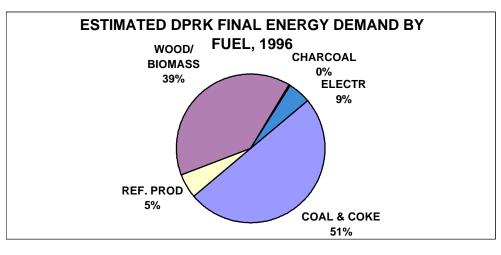


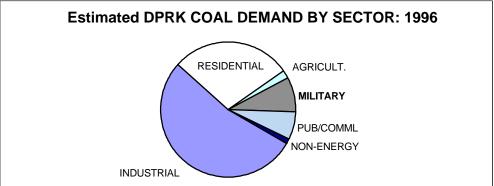
NAUTILUS INSTITUTE **ESTIMATED/PROJECTED ENERGY SUPPLY/DEMAND BALANCES DEMOCRATIC PEOPLE'S REPUBLIC OF KOREA (DPRK) 2002 UPDATE**

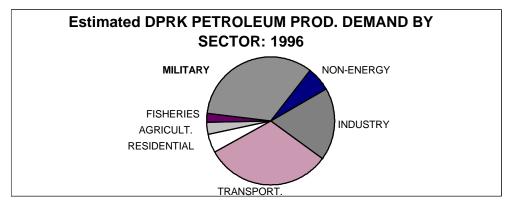
ESTIMATED SUMMARY ENERGY BALANCE FOR 1996

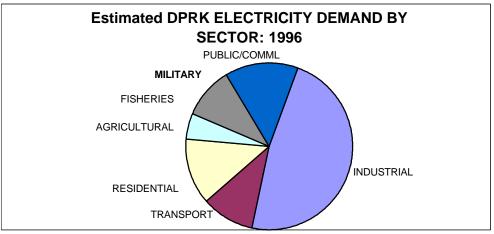

Prepared By David Von Hippel Date Last Modified:


2/24/2003

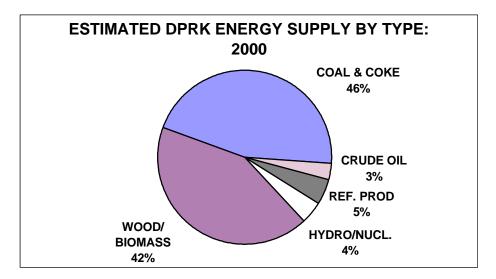

	COAL &	CRUDE	REF.	HYDRO/	WOOD/	CHAR-		
UNITS: PETAJOULES (PJ)	COKE	OIL	PROD	NUCL.	BIOMASS	COAL	ELEC.	TOTAL
ENERGY SUPPLY	697	43	31	19	367	-	(3)	1,153
Domestic Production	741	-	-	19	340	-	-	1,100
Imports	4	43	39	-	27	-	-	112
Exports	48	-	-	-	-	-	3	51
Stock Changes	-	-	7	-	-	-	-	7
ENERGY TRANSF.	(242)	(43)	15	(19)	(8)	3	49	(244)
Electricity Generation	(196)	-	(25)	(19)	-	_	79	(161)
Petroleum Refining	-	(43)	43	-	-	-	(0)	(0)
Coal Prod./Prep.	(36)	-	-	-	-	-	(5)	(41)
Charcoal Production	-	-	-	-	(8)	3	-	(5)
Own Use	-	-	(2)	-	-	-	(10)	(12)
Losses	(9)	-	-	-	-	-	(15)	(24)
FUELS FOR FINAL CONS.	455	-	47	-	359	3	46	909
ENERGY DEMAND	455	-	47	-	359	3	46	909
INDUSTRIAL	243	-	9	-	1	-	22	273
TRANSPORT	-	-	15	-	1	-	5	20
RESIDENTIAL	130	-	2	-	282	3	6	422
AGRICULTURAL	9	-	2	-	40	-	2	53
FISHERIES	-	-	1	-	-	-	0	1
MILITARY	38	-	16	-	-	-	5	59
PUBLIC/COMML	31	-	-	-	-	-	7	38
NON-SPECIFIED			-					-
NON-ENERGY	5		3		35			43
Elect. Gen. (Gr. TWhe)*	15.71	-	0.91	5.32	-	-	-	- 21.94

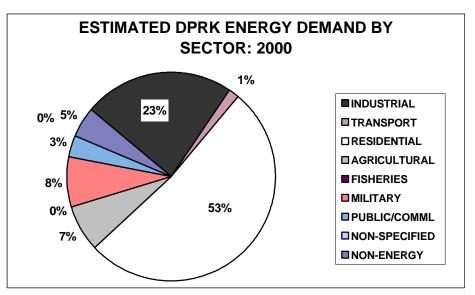

*Note: Gross terawatt-hours for coal-fired plants includes output for plants co-fired with coal and heavy fuel oil.

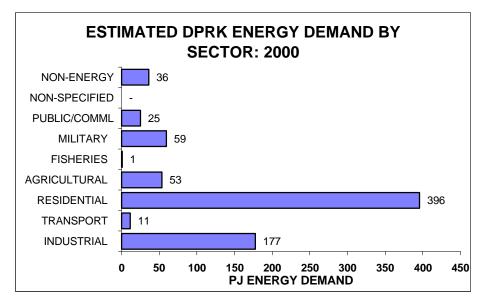


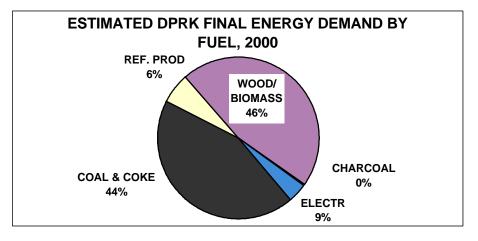


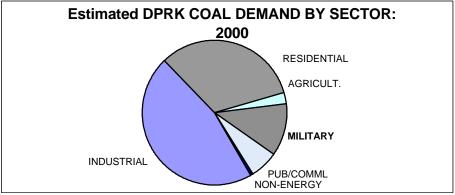
NAUTILUS INSTITUTE **ESTIMATED/PROJECTED ENERGY SUPPLY/DEMAND BALANCES DEMOCRATIC PEOPLE'S REPUBLIC OF KOREA (DPRK) 2002 UPDATE**

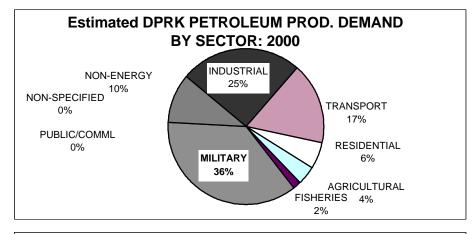

ESTIMATED SUMMARY ENERGY BALANCE FOR 2000


Prepared By David Von Hippel Date Last Modified:


2/24/2003


	COAL &		REF.	HYDRO/	WOOD/	CHAR-		TOTAL
UNITS: PETAJOULES (PJ)	COKE	OIL	PROD	NUCL.	BIOMASS	COAL	ELEC.	TOTAL
ENERGY SUPPLY	386	25	40	35	359	-	(0)	844
Domestic Production	384	-	-	35	332	-	-	752
Imports	9	25	43	-	27	-	-	104
Exports	8	-	3	-	-	-	0	11
Stock Changes	-	-	-	-	-	-	-	-
ENERGY TRANSF.	(55)	(25)	6	(35)	(8)	3	29	(85)
Electricity Generation	(32)	-	(16)	(35)	-	-	45	(38)
Petroleum Refining	-	(25)	24	-	-	-	(0)	(1)
Coal Prod./Prep.	(19)	-	-	-	-	-	(3)	(21)
Charcoal Production	-	-	-	-	(8)	3	-	(5)
Own Use	-	-	(1)	-	-	-	(2)	(3)
Losses	(5)	-	-	-	-	-	(12)	(16)
FUELS FOR FINAL CONS.	331	-	46	-	351	3	29	759
ENERGY DEMAND	331	-	46	-	351	3	29	759
INDUSTRIAL	153	-	12	-	0	-	13	177
TRANSPORT	-	-	8	-	0	-	3	11
RESIDENTIAL	108	-	3	-	280	3	3	396
AGRICULTURAL	9	-	2	-	40	-	2	53
FISHERIES	-	-	1	-	-	-	0	1
MILITARY	38	-	17	-	-	-	5	59
PUBLIC/COMML	21	-	-	-	-	-	4	25
NON-SPECIFIED			-					-
NON-ENERGY	2		5		29			36
Elect. Gen. (Gr. TWhe)*	2.64	-	0.15	9.85	-	-	-	12.64


*Note: Gross terawatt-hours for coal-fired plants includes output for plants co-fired with coal and heavy fuel oil.





ESTIMATED/PROJECTED ENERGY SUPPLY/DEMAND BALANCES DEMOCRATIC PEOPLE'S REPUBLIC OF KOREA (DPRK) <u>2002 UPDATE</u> BACK-UP CALCULATIONS AND DATA: COAL EXTRACTION AND PROCESSING, IMPORTS

Prepared By David Von Hippel Date Last Modified:

6/8/2002

DERIVATION OF INFORMATION PASSED TO ENERGY BALANCE SHEET, 1990

DERIVATION OF INFORMATION PASSED TO ENERGY	BAEANOE ONEEN, 1990	Source/Note
Domestic Coal Production (official)		
Anthracite Coal	4.90E+07 te	1
Brown Coal	2.10E+07 te	1
Heat Content, Anthracite	6150 kcal/kg	2
Heat Content, Brown Coal	4250 kcal/kg	2
Weighted Ave Heat Content	5580 kcal/kg	
Official Ave. Heat Content	4500 kcal/kg	10
Conversion Factor	4.184 kJ/kcal	
Total Coal Production (official)	1317960000 GJ	
True-up factor to reduce coal supply to meet demand	100%	Assumption
Total Coal Production (revised)	1317960000 GJ	
Coal and Coke Imports		
Total Coal Imports	2.38E+06 te	3
Average Heat Content	26.2 GJ/te	8
Coal Imports	6.24E+07 GJ	
Coke Imports	2.09E+05 te	3
Average Heat Content	28.47 GJ/te	4
Coke Imports	5.95E+06 GJ	
Total Coal and Coke Imports	6.84E+07 GJ	
Coal Exports		
Total Coal Exports (Anthracite)	1.17E+06 te	5
Heat Content, Anthracite	6200 kcal/kg	8
Conversion Factor	<u>4.184</u> kJ/kcal	
	3.04E+07 GJ	
Coal Use in Coal Mining		
Per-unit coal use in mining	39.1 kg/te	7
Weighted Ave Heat Content	5580 kcal/kg	
Conversion Factor	<u>4.184</u> kJ/kcal	
Coal Use in Mining Industry	6.39E+07 GJ	
Coal Transport Losses		
Coal Loss Rate	1% of mined	Guess
Mass of Coal Lost	7.00E+05 te	
Energy content of Coal Lost	1.63E+07 GJ	
Electricity Use in Coal Mining		
Electricity intensity of mining	34.34 kWh/te	6
Conversion Factor	0.0036 GJ/kWh	
Electricity Used in Coal Mining	8.65E+06 GJ	

COAL SUPPLY ESTIMATE Coal Imports to the DPRK (China) 1.75E+06 te (In 1993) 11 2.09E+05 te (In 1990) Coke Imports from FSU 3 1.55E+05 te Coal Exports to China (In 1993) 11 1996 2000 2 THIS SECTION OF Coal Imports to the DPRK relative to 1993 100% 15% 17 Coke Imports to the DPRK relative to 1990 36% 18% 12 THIS WORKSHEET Total Estimated Coal+Coke Imports (GJ) 4.80E+07 7.79E+06 Calculated Coal Exp. from DPRK rel. to 1993 Exp. to China NOT USED FOR THIS 100% 232% 18 Total Estimated Coal Exports (GJ) 4.02E+06 9.32E+06 Calculated **ANALYSIS** Domestic Coal Production relative to 1990 56.20% 29.15% 13 Calculated Total Estimated Domestic Coal Production (GJ) 7.41E+08 3.84E+08 Estimated Coal Use in Coal Mining (GJ) 3.59E+07 1.86E+07 Calculated 9.18F+06 4.76E+06 Estimated Coal Losses (GJ) Calculated Estimated Electricity Use in Coal Mining (GJ) 4.86E+06 2.52E+06 Calculated Data on Coal Imports from and Exports to Other Countries, 2000 Data on Coal Exports from China to the DPRK and Imports to China from the DPRK (Source 15) Export Import Mer ID Name Unit US \$ US \$ Amount Amount 27011100 Blend coal kg 1,024,000 \$ 40,960 8,142,700 \$ 90.332 27011100 anthracite coal 1.024.000 \$ 8.142.700 \$ 90.332 kg 40.960 100,489,900 \$ 3,616,390 27011210 agglomerating(cindery) coal kg 27011290 other bituminous/soft coal kg 17,406,100 \$ 519,652 27011900 other coal kg 53,646,410 \$ 2,018,696 27040010 coking coal and semi-coking coal kg 53,166,100 \$ 3,001,260 27060000 coke tar; oil tar from distilling minerals kg 154,500 \$ 37,600 225,887,010 Data on Coal Exports to Japan from the DPRK (Source 16) Name Mer. ID 27011100 anthracite coal 351,069 tonnes Data on Coal Imports from Australia to the DPRK Total estimated coal imports from Australia (see Note 14) 31.127 tonnes Notes: 1 1989 value from document in authors' files [HT1]. Other estimates are as high as 87 total Mte, and as low as 43 (both for 1990), and more recent outside estimates are even lower. 2 Choi Su Young, Study of the Present State of Energy Supply in North Korea, RINU, 1993. P. 14. 3 Imports to NK. Choi Su Young, Study of the Present State of Energy Supply in North Korea, RINU, 1993. P. 23. Based on various statistics, including UN 4 J. Sinton, Editor, China Energy Databook, 1992 (Revised 1993). LBL. Page xii. Coal import figure assumes washed Chinese coal. 5 Exports to China. Choi Su Young, Study of the Present State of Energy Supply in North Korea, RINU, 1993. P. 25. Based on various statistics, including UN 6 Raw coal production electricity use, China, 1980, from "Physical Intensity of Selected Industrial Products" Spreadsheet printout from J. Sinton, LBL 7 Coal use in coal mining from [Chinese language spreadsheet dated 12-Feb-93 provided by J. Sinton]. 8 Young Sik Jang, North Korean Energy Economics, Korea Development Institute, 1994 (p. 179). Value in this source for import coal to NK is within 1% of value for washed Chinese coal from reference 4. 10 Official 1989 value from document in authors' files [EE1]. 11 J. Sinton, Editor, China Energy Databook (Revised 1996). Lawrence Berkeley National Laboratory (LBNL). Value is for the year 1993. Page VII-8. 12 Assumed to scale with iron and steel production. 13 Set so as to balance demand+exports-imports 14 "Democratic People's Republic of Korea Fact Sheet", from the Australian Department of Foreign Trade (www.dfat.gov.au/geo/dprk, visited 5/17/2002), lists Australian exports of coal to the DPRK during "2000-2001" 1.70 million \$AU. Data from http://www.australiancoal.com/exports.htm with a value of (visited 5/23/02) show that 104.4 million tonnes of "Metallurgical coal" and 89 million tonnes of "thermal" coal were exported overall by Australia in 2000-2001, with values, respectively, of 6367.7 and 4194.9 million \$AU. This suggest that the average value per ton of coal shipped was 54.62 AU per tonne, so that if coal exports to the DPRK were of the same proportions of metallurgical and thermal coals as overall exports, 31,127 tonnes of coal would have been exported from Australia to the DPRK a total of approximately in 2000-2001 15 Data from China Customs Report 2000, pp. 1483-1495 (in Chinese).

¹⁶ From Japan customs statistics, http://www.customs.go.jp/toukei/info/index_e.htm.

¹⁷ Year 2000 value includes reported coal imports from China and Australia.

¹⁸ Year 2000 value includes reported coal exports to China and Japan.

ESTIMATED/PROJECTED ENERGY SUPPLY/DEMAND BALANCES DEMOCRATIC PEOPLE'S REPUBLIC OF KOREA (DPRK) <u>2002 UPDATE</u> BACK-UP CALCULATIONS AND DATA: OIL IMPORTS, EXPORTS, AND REFINING

Prepared By David Von Hippel Date Last Modified:

6/8/2002

DERIVATION OF INFORMATION PASSED TO ENERGY BALANCE SHEET, 1990

					Source/Note:
Domestic Crude Oil Production		0	te		
Crude Oil Imports, Total		2.60E+06	te		1
Conversion Factor		4.26E+01	GJ/te		
Crude Oil Imports, Total		1.11E+08	GJ		
Refined Products Imports			-		
	te	toe/te	Тое		
Gasoline	1.20E+05	1.05E+00			3
Kerosene	5.00E+04				3
Diesel	3.00E+05	1.03E+00	3.10E+05		3
Heavy Oil	1.50E+05	9.91E-01	1.49E+05		3
TOTAL			6.36E+05	toe	
Conversion Factor		4.18E+01			
Total Refined Products Imports			2.66E+07		
Total Oil Imports			1.37E+08	GJ	
Energy Use in RefiningWest Coast			toe/te of input		2
Energy Use in Refining-East Coast R	efinery		toe/te of input		17
Conversion Factor		4.18E+01			
Total Refining Losses		6.29E+06	GJ		
Production of Refined Products, Tota	l	1.04E+08	GJ		
LPG Consumption		2.55E+03	te		4
Conversion Factor		4.24E+01	GJ/te		
LPG Consumption, Total		1.08E+05	GJ		
					_
ESTIMATE OF CURRENT AND FUT		OIL AND OIL PR	ODUCTS SUP	PLY	
Input Data for the Year 1996					
Crude Oil Imports from China, 1st thr	ough 3rd Quar	ters, 1996	7.48E+05	tonnes	5
Extrapolated Crude Oil Imports from	China, 1996		9.98E+05	tonnes	
Estimate of other crude oil imports, 1	996		0.00E+00	tonnes	13
Conversion Factor			4.26E+01	GJ/te	
Total Estimated Crude Oil Imports to	DPRK, 1996		4.25E+07		
Official Refined Prod. Imports from C		Q., 1996	4.27E+04		5,6
Extrapolated Official Refined Prod. Ir			5.70E+04	tonnes	,
Conversion Factor	•	1.050			
HFO Supplied by KEDO, 1996 (11/1	/95 to 10/31/9		500,000	tonnes	7
Est. Conversion Factor, K			toe/te		
Other Imports of Refined Products, 1		tonnes	toe/te	GJ	
	Gasoline	1.26E+05		5.54E+06	14
	Kerosene	1.20E+04		5.18E+05	
	Diesel	1.20E+05		5.18E+06	
	HFO	9.40E+04	0.991	3.90E+06	
Total Estimated Refined Product Imp	-		3.86E+07		.,
Estimated HFO placed in storage, 19	96		180,294	tonnes	8
			7.48E+06		8

Input Data for the Year 2000				
DPRK Crude Oil Production		0.00E+00	tonnes	27
Reported Crude Oil Imports from China, 2000		3.89E+05	tonnes	18
Other Imports of Crude Oil from not Reported		0.00E+00	tonnes	
Total Estimated Crude Oil Imports from China, 2000)	3.89E+05	tonnes	
Estimate of other crude oil imports, 2000 (unknown	source)	1.93E+05	tonnes	See below
Conversion Factor	,	4.26E+01	GJ/te	
Total Estimated Crude Oil Imports to DPRK, 2000		2.48E+07	GJ	
Official Refined Prod. Imports from China, 2000		1.17E+05	tonnes	18
Extrapolated Official Refined Prod. Imports from Ch	ina, 2000	1.17E+05	tonnes	
Conversion Factor	1.050	toe/te		
HFO Supplied by KEDO, 2000 (1/1/2000 to 12/31/	2000)	394,722	tonnes	19
Est. Conversion Factor, KEDO Oil		toe/te		
Total Imports of Refined Products, 2000	tonnes	toe/te	GJ	
Gasoline	1.43E+05	1.050	6.28E+06	Sum of
Kerosene	5.61E+04	1.032	2.42E+06	Imports from
Diesel	2.12E+05	1.032	9.14E+06	all nations
HFO	5.20E+05	0.991	2.16E+07	(see below,
LPG/Refinery Gas/Non-Energy	6.43E+04	1.013	2.72E+06	and note 15)
Total Estimated Refined Product Imports to DPRK, 2	2000	4.21E+07	GJ	
Estimated Refined Product Exports from DPRK, 200	00 (to China)	tonnes	GJ	
HFO		68,135	2.83E+06	
LPG/Refinery Gas/Non-Energy		4,329	1.83E+05	
Tatal of above		72,464	3.01E+06	
Total of above				00
Estimated Net HFO placed in storage, 2000		-	tonnes	26

Crude Oil Imports from China relative to 1996 Other Crude Oil Imports (tonnes) Official Refined Products Imports from China re HFO Supplied by KEDO (tonnes)	elative to 1996	2000 39% 1.93E+05 206% 3.95E+05	THIS SECTION OF THIS WORKSHEET	g
Other Imports of Refined Products (tonnes)	Gasoline	1.43E+05	NOT USED FOR	15
	Kerosene	5.61E+04	THIS ANALYSIS	15
	Diesel	2.12E+05		15
	HFO	5.20E+05		15

Estimated Refinery Statistics1990				
	West Coast	East Coast		
Capacity, barrels of crude/day	2.90E+04	4.20E+04		12
Capacity, tonnes of crude per year	1.446E+06	2.095E+06		
Output (Weight fraction of input)				
Heavy Fuel Oil	38%	34%		11, 17
Gasoline	22%	24%		11, 17
Diesel Oil	20%	15%		11, 17
Kerosene	4%	11%		11, 17
LPG/Refinery Gas/Non-Energy	12%	11%		11, 17
TOTAL	96%	95%		
Estimated Refinery Input, 1990 (tonnes)	1.16E+06	1.44E+06		
Estimated Refinery Output, 1990 (tonnes)			Toe/Te	
Heavy Fuel Oil	440,800	489,600	0.991	
Gasoline	255,200	345,600	1.050	
Diesel Oil	232,000	216,000	1.032	
Kerosene	46,400	158,400	1.032	
LPG/Refinery Gas/Non-energy (gross)	139,200	158,400	1.013	
Estimated Refinery Fuel Use (toe)	67,048	75,312		
Estimated Net Refinery Output, 1990 (GJ)			% of Net	
Heavy Fuel Oil	1.83E+07	2.03E+07	36.82%	
Gasoline	1.12E+07	1.52E+07	25.19%	
Diesel Oil	1.00E+07	9.33E+06	18.46%	
Kerosene	2.00E+06	6.84E+06	8.44%	
LPG/Refinery Gas/Non-Energy	5.09E+06	6.53E+06	11.10%	10
TOTAL	4.66E+07	5.82E+07	100.00%	
Estimated Net Refinery Output, 1990 (tonnes)	1,094,488	1,363,647	2,458,134	
		-		
Refinery use of electricity, kWh/tonne output	67.04			28
Estimated 1990 Refinery use of electricity	165	GWh or	5.93E+05 GJ	
		-		

Estimated Refinery Statistics1996				
	West Coast	East Coast		
Capacity, barrels of crude/day	2.90E+04	4.20E+04		12
Capacity, tonnes of crude per year	1.446E+06	2.095E+06		
Output (Weight fraction of input)				
Heavy Fuel Oil	38%	34%		11, 17
Gasoline	22%	24%		11, 17
Diesel Oil	20%	15%		11, 17
Kerosene	4%	11%		11, 17
LPG/Refinery Gas/Non-Energy	12%	11%		11, 17
TOTAL	96%	95%		
Estimated Refinery Input, 1996 (tonnes)	9.98E+05	0		
Estimated Refinery Output, 1996 (tonnes)			Toe/Te	
Heavy Fuel Oil	379,193	-	0.991	
Gasoline	219,533	-	1.050	
Diesel Oil	199,575	-	1.032	
Kerosene	39,915	-	1.032	
LPG/Refinery Gas/Non-energy (gross)	119,745	-	1.013	
Estimated Refinery Fuel Use (toe)	57,677	-		
Estimated Net Refinery Output, 1996 (GJ)			% of Net	
Heavy Fuel Oil	1.57E+07	0.00E+00	39.22%	
Gasoline	9.64E+06	0.00E+00	24.06%	
Diesel Oil	8.62E+06	0.00E+00	21.50%	
Kerosene	1.72E+06	0.00E+00	4.30%	
LPG/Refinery Gas/Non-Energy	4.38E+06	0.00E+00	10.93%	10
TOTAL	4.01E+07	0.00E+00	100.00%	
Estimated Net Refinery Output, 1996 (tonnes)	941,521			
Refinery use of electricity, kWh/tonne output	67.04			28
Estimated 1996 Refinery use of electricity	63	GWh or	2.27E+05 GJ	
		-		

Estimated Refinery Statistics2000				
(See below for smaller W. Coast Refinery)	West Coast	East Coast		
Capacity, barrels of crude/day	2.90E+04	4.20E+04		12
Capacity, tonnes of crude per year	1.45E+06	2.09E+06		
Output (Weight fraction of input)				
Heavy Fuel Oil	38%	34%		11, 17
Gasoline	22%	24%		11, 17
Diesel Oil	20%	15%		11, 17
Kerosene	4%	11%		11, 17
LPG/Refinery Gas/Non-Energy	12%	11%		11, 17
TOTAL	96%	95%		
Estimated Refinery Input, 2000 (tonnes)	3.89E+05	0.00E+00		
Estimated Refinery Output, 2000 (tonnes)			Toe/Te	
Heavy Fuel Oil	147,910	-	0.991	
Gasoline	85,632	-	1.050	
Diesel Oil	77,847	-	1.032	
Kerosene	15,569	-	1.032	
LPG/Refinery Gas/Non-energy (gross)	46,708	-	1.013	
Estimated Refinery Fuel Use (toe)	22,498	-		
Estimated Net Refinery Output, 2000 (GJ)			% of Net	
Heavy Fuel Oil	6.13E+06	0.00E+00	39.22%	
Gasoline	3.76E+06	0.00E+00	24.06%	
Diesel Oil	3.36E+06	0.00E+00	21.50%	
Kerosene	6.72E+05	0.00E+00	4.30%	
LPG/Refinery Gas/Non-Energy	1.71E+06	0.00E+00	10.93%	10
TOTAL	1.56E+07	0.00E+00	100.00%	
Estimated Net Refinery Output, 2000 (tonnes)	367,254			
		_		
Refinery use of electricity, kWh/tonne output	67.04]		28
Estimated 2000 Refinery use of electricity	37.03	GWh or	1.33E+05 GJ	
(Includes small West Coast refinery)		-		

Crude Oil and Refined Products Imports from and Exports to China, 2000 (kilograms: See Note 18)							
	<u>, 2000 (Illiogram</u>		<u>107</u>				
Commodity	Imports	Exports					
asphalt	4,203,170	I					
asphalt coke	40,000						
crude petroleum and crude oil from asphalt	389,236,142						
vehicle use gasoline and aviation gasoline	22,091,731						
rubber solvent oil, oil paint solvent	87,621						
Jet fuel	46,853,114						
light diesel oil	29,108,167						
other diesel oil and fuel oil	3,589,984						
lubricant grease	168,652						
lubricant oil	7,781,450						
lubricant oil basic oil	1,789,195						
other heavy oil	1,1 00,100	19,920,914					
liquefied butane for lighter, volume > 300 cuom	16,000	10,020,011					
other liquefied butane	30,400						
other unlisted liquefied petroleum gas and other aromatic gas	00,100	4,314,996					
vaseline	75,735	1,011,000					
paraffin wax, content less than 0.75% in terms of weight	10,000						
microcystal wax	2,200						
unburnt petroleum coke	843,000						
petroleum asphalt	211,289						
other petroleum or residuals from asphalt smelting	563,217						
emulsified asphalt	10,450						
Total refined products (above less crude oil)	117,475,375	24 249 926					
	111, 110,010	21,210,020					
Summary of Above in Refined Products Balance Reporting Ca	tegories (tonnes	5)					
Commodity	Imports	Exports					
Heavy Fuel Oil	-	19,921					
Gasoline/Aviation Gasoline	22,092						
Diesel Oil	32,698						
Kerosene/Jet Fuel	46,853						
LPG/Refinery Gas/Non-Energy	15,832	4,329					
Total of Above	117,475	24,250					
Estimate of 2000 Imports of Petroleum Products from Russia							
Total Imports estimated at: 1.5 kbbl/day			Source 20				
at an estimated 7.24 bbl/tonne (assumes ave	rage product den	sity of .87 kg/l)				
	04 tonnes	-					
Assume that 80% of these impor	ts are diesel/gas	oil, and					
20% are heavy oil o		then total					
import from Russia were 6.05E+0	04 of diesel and						
1.51E+0	04 of heavy oil.						

Year 2000 Oil products imports from other coun	tries							
Oil products imports from Japan	4.43E+04	tonnos		See Note 21				
Fraction as kerosene:	4.43LT04	99.51%		See 1101e 2 1				
Fraction as non-energy (mostly solvents	.).	0.49%						
Total imports of kerosene from Japan	4.41E+04							
		2.15E+02	tonnoo					
Total imports of non-energy petrol. prod	ucts from Japan	2.15E+02	tonnes					
Oil products from Singapore: Rough estimat	e of value:	\$14,000,000		See Note 22				
Rough estimat	e of price:	\$ 0.70	per gallon	See Note 23				
Assume that imports are		gasoline and						
		diesel, and thu	is having					
an average density of 0.74	kg/liter for gasoli		5					
	kg/liter for diesel							
then at 3.78 liters per gallor								
	gallons, or	4.48E+04	tonnes of gas	soline and				
	gallorio, el		tonnes of die					
Oil Products from the ROK:		<u> </u>						
Rough estimate of maximum rate of imp		10,000	Bbl/day for	See Note 24				
10% of the year, or		1000	Bbl/day.					
Assume that these oil products are (or o				diesel				
and 30% heavy fuel oil a	at an assumed de	nsity of	0.95	kg/liter.				
This implies imports from the ROK of	16,515	tonnes of heav	y fuel oil and					
	35,290	of diesel.	-					
		-						
Imports and Exports Associated with Asphalt Use for								
Middle of estimated asphalt requirement	ts for Nampo-Pyo	ngyang Road b	uilt in 2000					
48,214 tonnes								
Assumed mass of heavy oil traded (prot	bably to China) pe	r tonne asphalt	received:					
1.00, which implies	heavy fuel oil exp	orts of:	48,214	tonnes				
; · · · ·	,	, i i i i i i i i i i i i i i i i i i i	i					
Estimate of Output of Smaller West Coast Refinery (see Note 25)								
Estimate of Output of Smaller West Coast Refin	ery (see Note 25)						
Estimate of Output of Smaller West Coast Refin We know little about the small refinery on the West			it is thought to	be				
We know little about the small refinery on the West	Coast of the DPR	K, except that						
We know little about the small refinery on the West dedicated all or in part to the military, and is a relativ	Coast of the DPR vely crude fraction	K, except that ation or "toppe	r"-type refiner	у.				
We know little about the small refinery on the West dedicated all or in part to the military, and is a relativ It is not know where the oil for this refinery comes fi	Coast of the DPR vely crude fraction omit could be so	K, except that ation or "toppe ome of the Rus	r"-type refiner sian oil descri	y. bed above,				
We know little about the small refinery on the West dedicated all or in part to the military, and is a relativ It is not know where the oil for this refinery comes fi or could be oil supplied in barter from China (and th	Coast of the DPR vely crude fraction romit could be so us not part of trac	K, except that lation or "toppe ome of the Rus le statistics), or	r"-type refiner sian oil descri could be purc	y. bed above,				
We know little about the small refinery on the West dedicated all or in part to the military, and is a relativ It is not know where the oil for this refinery comes fir or could be oil supplied in barter from China (and the on the spot market. It operates in a batch mode, ar	Coast of the DPR vely crude fraction romit could be so us not part of trac nd reportedly had	K, except that lation or "toppe ome of the Rus le statistics), or an capacity fac	r"-type refiner sian oil descri could be purc tor of	y. bed above, chased				
We know little about the small refinery on the West dedicated all or in part to the military, and is a relative to the source of the second se	Coast of the DPR vely crude fraction romit could be so us not part of trac nd reportedly had he capacity of this	K, except that lation or "toppe ome of the Rus le statistics), or an capacity fac refinery, but e	r"-type refiner sian oil descri could be purc tor of stimate it belo	y. bed above, chased w based				
We know little about the small refinery on the West dedicated all or in part to the military, and is a relative to the source of the second se	Coast of the DPR vely crude fraction romit could be so us not part of trac nd reportedly had he capacity of this power plant that is	K, except that ation or "toppe ome of the Rus le statistics), or an capacity fac refinery, but es a near the refine	r"-type refiner sian oil descri could be purc tor of stimate it belo	y. bed above, chased w based				
We know little about the small refinery on the West dedicated all or in part to the military, and is a relative to the source of the second se	Coast of the DPR vely crude fraction romit could be so us not part of trac nd reportedly had he capacity of this power plant that is	K, except that ation or "toppe ome of the Rus le statistics), or an capacity fac refinery, but es a near the refine	r"-type refiner sian oil descri could be purc tor of stimate it belo	y. bed above, chased w based				
We know little about the small refinery on the West dedicated all or in part to the military, and is a relative It is not know where the oil for this refinery comes for or could be oil supplied in barter from China (and the on the spot market. It operates in a batch mode, ar about 20% in 2000. We do not know the on what is known about the capacity of the oil-fired following rough estimates of refinery outputs and references.	Coast of the DPR vely crude fraction romit could be so us not part of trac nd reportedly had he capacity of this power plant that is lated assumptions	K, except that ation or "toppe ome of the Rus le statistics), or an capacity fac refinery, but es near the refines.	r"-type refiner sian oil descri could be purc tor of stimate it belo ery site, and o	y. bed above, chased w based on the				
We know little about the small refinery on the West dedicated all or in part to the military, and is a relativities is not know where the oil for this refinery comes fir or could be oil supplied in barter from China (and the on the spot market. It operates in a batch mode, ar about 20% in 2000. We do not know the on what is known about the capacity of the oil-fired following rough estimates of refinery outputs and refraction of heavy fuel oil produced by the refinery u	Coast of the DPR vely crude fraction romit could be so us not part of trac nd reportedly had he capacity of this power plant that is lated assumptions sed in the nearby	K, except that lation or "toppe ome of the Rus le statistics), or an capacity fac refinery, but e s near the refine s. power plant:	r"-type refiner sian oil descri could be purc tor of stimate it belo ery site, and o 95%	y. bed above, chased w based on the <i>Assumption</i>				
We know little about the small refinery on the West dedicated all or in part to the military, and is a relative to the normal term of the second be oil supplied in barter from China (and the on the spot market. It operates in a batch mode, ar about 20% in 2000. We do not know the on what is known about the capacity of the oil-fired following rough estimates of refinery outputs and refraction of heavy fuel oil produced by the refinery u Gross efficiency of power plant (assumes relatively	Coast of the DPR vely crude fraction romit could be so us not part of trac nd reportedly had he capacity of this power plant that is lated assumptions sed in the nearby poor condition an	K, except that lation or "toppe ome of the Rus le statistics), or an capacity fac refinery, but e s near the refine s. power plant: d operation in a	r"-type refiner sian oil descri could be purc tor of stimate it belo ery site, and o 95%	y. bed above, chased w based on the <i>Assumption</i>				
We know little about the small refinery on the West dedicated all or in part to the military, and is a relative to solve the solve to the sector of the sect	Coast of the DPR vely crude fraction romit could be so us not part of trac nd reportedly had he capacity of this power plant that is lated assumptions sed in the nearby poor condition an 19%	K, except that lation or "toppe ome of the Rus le statistics), or an capacity fac refinery, but e s near the refine s. power plant: d operation in a	r"-type refiner sian oil descri could be purc tor of stimate it belo ery site, and o <u>95%</u> a cogeneratior	y. bed above, chased w based on the <i>Assumption</i>				
We know little about the small refinery on the West dedicated all or in part to the military, and is a relativ It is not know where the oil for this refinery comes fi or could be oil supplied in barter from China (and th on the spot market. It operates in a batch mode, ar about 20% in 2000. We do not know t on what is known about the capacity of the oil-fired following rough estimates of refinery outputs and re Fraction of heavy fuel oil produced by the refinery u Gross efficiency of power plant (assumes relatively mode to provide steam for the refinery). Implied heavy oil input to power plant:	Coast of the DPR vely crude fraction romit could be so us not part of trac nd reportedly had he capacity of this power plant that is lated assumptions sed in the nearby poor condition an	K, except that lation or "toppe ome of the Rus le statistics), or an capacity fac refinery, but e s near the refine s. power plant: d operation in a	r"-type refiner sian oil descri could be purc tor of stimate it belo ery site, and o 95%	y. bed above, chased w based on the <i>Assumption</i>				
We know little about the small refinery on the West dedicated all or in part to the military, and is a relative to solve the solve to the sector of the sect	Coast of the DPR vely crude fraction romit could be so us not part of trac nd reportedly had he capacity of this power plant that is lated assumptions sed in the nearby poor condition an 19%	K, except that lation or "toppe ome of the Rus le statistics), or an capacity fac refinery, but e s near the refine s. power plant: d operation in a GJ, or	r"-type refiner sian oil descri could be purc tor of stimate it belo ery site, and o <u>95%</u> a cogeneratior 47,572	y. bed above, chased w based on the <i>Assumption</i>				
We know little about the small refinery on the West dedicated all or in part to the military, and is a relativ It is not know where the oil for this refinery comes fi or could be oil supplied in barter from China (and th on the spot market. It operates in a batch mode, ar about 20% in 2000. We do not know t on what is known about the capacity of the oil-fired following rough estimates of refinery outputs and re Fraction of heavy fuel oil produced by the refinery u Gross efficiency of power plant (assumes relatively mode to provide steam for the refinery). Implied heavy oil input to power plant: If the output of the refinery is roughly:	Coast of the DPR vely crude fraction romit could be so us not part of tract and reportedly had he capacity of this power plant that is lated assumptions sed in the nearby poor condition an 19% 1,991,747	K, except that ation or "toppe ome of the Rus le statistics), or an capacity fac refinery, but es near the refine s. power plant: d operation in a GJ, or	r"-type refiner sian oil descri could be purc tor of stimate it belo ery site, and o <u>95%</u> a cogeneratior <u>47,572</u> Output	y. bed above, chased w based on the <i>Assumption</i>				
We know little about the small refinery on the West dedicated all or in part to the military, and is a relativ It is not know where the oil for this refinery comes fi or could be oil supplied in barter from China (and th on the spot market. It operates in a batch mode, ar about 20% in 2000. We do not know t on what is known about the capacity of the oil-fired following rough estimates of refinery outputs and re Fraction of heavy fuel oil produced by the refinery u Gross efficiency of power plant (assumes relatively mode to provide steam for the refinery). Implied heavy oil input to power plant: If the output of the refinery is roughly: Output (Energy fraction of input)	Coast of the DPR vely crude fraction romit could be so us not part of trac ind reportedly had he capacity of this power plant that is lated assumptions sed in the nearby poor condition an 19% 1,991,747	K, except that ation or "toppe ome of the Rus le statistics), or an capacity fac refinery, but e s near the refine s. power plant: d operation in a GJ, or Implied toe	r"-type refiner sian oil descri could be purc tor of stimate it belo ery site, and o <u>95%</u> a cogeneratior <u>47,572</u> Output GJ	y. bed above, chased w based on the <i>Assumption</i>				
We know little about the small refinery on the West dedicated all or in part to the military, and is a relative it is not know where the oil for this refinery comes for or could be oil supplied in barter from China (and the on the spot market. It operates in a batch mode, are about 20% in 2000. We do not know to on what is known about the capacity of the oil-fired following rough estimates of refinery outputs and re Fraction of heavy fuel oil produced by the refinery u Gross efficiency of power plant (assumes relatively mode to provide steam for the refinery). Implied heavy oil input to power plant: If the output of the refinery is roughly: Output (Energy fraction of input) Heavy Fuel Oil	Coast of the DPR vely crude fraction romit could be so us not part of trac ind reportedly had he capacity of this power plant that is lated assumptions sed in the nearby poor condition an 19% 1,991,747	K, except that ation or "toppe ome of the Rus le statistics), or an capacity fac refinery, but e s near the refine s. power plant: d operation in a GJ, or Implied toe 50,076	r"-type refiner sian oil descri could be purc tor of stimate it belo ery site, and o <u>95%</u> a cogeneratior <u>47,572</u> Output GJ 2.15E+06	y. bed above, chased w based on the <i>Assumption</i>				
We know little about the small refinery on the West dedicated all or in part to the military, and is a relativ It is not know where the oil for this refinery comes fi or could be oil supplied in barter from China (and th on the spot market. It operates in a batch mode, ar about 20% in 2000. We do not know t on what is known about the capacity of the oil-fired following rough estimates of refinery outputs and re Fraction of heavy fuel oil produced by the refinery u Gross efficiency of power plant (assumes relatively mode to provide steam for the refinery). Implied heavy oil input to power plant: If the output of the refinery is roughly: Output (Energy fraction of input) Heavy Fuel Oil Gasoline	Coast of the DPR vely crude fraction romit could be so us not part of trac- nd reportedly had he capacity of this power plant that is lated assumptions sed in the nearby poor condition an 19% 1,991,747	K, except that lation or "toppe ome of the Rus le statistics), or an capacity fac refinery, but e s near the refine s. power plant: d operation in a GJ, or Implied toe 50,076 29,313	r"-type refiner sian oil descri could be purc tor of stimate it belo ery site, and o <u>95%</u> a cogeneratior <u>47,572</u> Output GJ 2.15E+06 1.26E+06	y. bed above, chased w based on the <i>Assumption</i>				
We know little about the small refinery on the West dedicated all or in part to the military, and is a relativ It is not know where the oil for this refinery comes fi or could be oil supplied in barter from China (and th on the spot market. It operates in a batch mode, ar about 20% in 2000. We do not know t on what is known about the capacity of the oil-fired following rough estimates of refinery outputs and re Fraction of heavy fuel oil produced by the refinery u Gross efficiency of power plant (assumes relatively mode to provide steam for the refinery). Implied heavy oil input to power plant: If the output of the refinery is roughly: Output (Energy fraction of input) Heavy Fuel Oil Gasoline Diesel Oil	Coast of the DPR vely crude fraction romit could be so us not part of trac- nd reportedly had he capacity of this power plant that is lated assumptions sed in the nearby poor condition an 19% 1,991,747	K, except that ation or "toppe ome of the Rus le statistics), or an capacity fac refinery, but e s near the refine s. power plant: d operation in a GJ, or Implied toe 50,076 29,313 43,816	r"-type refiner sian oil descri could be purc tor of stimate it belo ery site, and o <u>95%</u> a cogeneratior <u>47,572</u> Output GJ 2.15E+06 1.26E+06 1.88E+06	y. bed above, chased w based on the <i>Assumption</i>				
We know little about the small refinery on the West dedicated all or in part to the military, and is a relativ It is not know where the oil for this refinery comes fi or could be oil supplied in barter from China (and th on the spot market. It operates in a batch mode, ar about <u>20%</u> in 2000. We do not know t on what is known about the capacity of the oil-fired following rough estimates of refinery outputs and re Fraction of heavy fuel oil produced by the refinery u Gross efficiency of power plant (assumes relatively mode to provide steam for the refinery). Implied heavy oil input to power plant: If the output of the refinery is roughly: Output (Energy fraction of input) Heavy Fuel Oil Gasoline Diesel Oil Kerosene/Jet Fuel	Coast of the DPR vely crude fraction romit could be so us not part of trac- nd reportedly had he capacity of this power plant that is lated assumptions sed in the nearby poor condition an 19% 1,991,747 Assumptions 41% 24% 21% 5%	K, except that ation or "toppe ome of the Rus le statistics), or an capacity fac refinery, but e s near the refine s. power plant: d operation in a GJ, or Implied toe 50,076 29,313 43,816 11,923	r"-type refiner sian oil descri could be purc tor of stimate it belo ery site, and o <u>95%</u> a cogeneration <u>47,572</u> Output GJ 2.15E+06 1.26E+06 1.88E+06 5.11E+05	y. bed above, chased w based on the <i>Assumption</i>				
We know little about the small refinery on the West dedicated all or in part to the military, and is a relativ It is not know where the oil for this refinery comes fi or could be oil supplied in barter from China (and th on the spot market. It operates in a batch mode, ar about 20% in 2000. We do not know t on what is known about the capacity of the oil-fired following rough estimates of refinery outputs and re Fraction of heavy fuel oil produced by the refinery u Gross efficiency of power plant (assumes relatively mode to provide steam for the refinery). Implied heavy oil input to power plant: If the output of the refinery is roughly: Output (Energy fraction of input) Heavy Fuel Oil Gasoline Diesel Oil Kerosene/Jet Fuel LPG/Refinery Gas/Non-Energy	Coast of the DPR vely crude fraction romit could be so us not part of trac- nd reportedly had he capacity of this power plant that is lated assumptions sed in the nearby poor condition an 19% 1,991,747 Assumptions 41% 24% 21% 5%	K, except that ation or "toppe ome of the Rus le statistics), or an capacity fac refinery, but e s near the refine s. power plant: d operation in a GJ, or Implied toe 50,076 29,313 43,816 11,923 50,076	r"-type refiner sian oil descri could be purc tor of stimate it belo ery site, and o <u>95%</u> a cogeneratior <u>47,572</u> Output GJ 2.15E+06 1.26E+06 1.88E+06 5.11E+05 2.15E+06	y. bed above, chased w based on the <i>Assumption</i>				
We know little about the small refinery on the West dedicated all or in part to the military, and is a relativ It is not know where the oil for this refinery comes fi or could be oil supplied in barter from China (and th on the spot market. It operates in a batch mode, ar about <u>20%</u> in 2000. We do not know t on what is known about the capacity of the oil-fired following rough estimates of refinery outputs and re Fraction of heavy fuel oil produced by the refinery u Gross efficiency of power plant (assumes relatively mode to provide steam for the refinery). Implied heavy oil input to power plant: If the output of the refinery is roughly: Output (Energy fraction of input) Heavy Fuel Oil Gasoline Diesel Oil Kerosene/Jet Fuel	Coast of the DPR vely crude fraction romit could be so us not part of trac- nd reportedly had he capacity of this power plant that is lated assumptions sed in the nearby poor condition an 19% 1,991,747 Assumptions 41% 24% 21% 5%	K, except that ation or "toppe ome of the Rus le statistics), or an capacity fac refinery, but e s near the refine s. power plant: d operation in a GJ, or Implied toe 50,076 29,313 43,816 11,923	r"-type refiner sian oil descri could be purc tor of stimate it belo ery site, and o <u>95%</u> a cogeneration <u>47,572</u> Output GJ 2.15E+06 1.26E+06 1.88E+06 5.11E+05	y. bed above, chased w based on the <i>Assumption</i>				
We know little about the small refinery on the West dedicated all or in part to the military, and is a relativ It is not know where the oil for this refinery comes fi or could be oil supplied in barter from China (and th on the spot market. It operates in a batch mode, ar about 20% in 2000. We do not know t on what is known about the capacity of the oil-fired following rough estimates of refinery outputs and re Fraction of heavy fuel oil produced by the refinery u Gross efficiency of power plant (assumes relatively mode to provide steam for the refinery). Implied heavy oil input to power plant: If the output of the refinery is roughly: Output (Energy fraction of input) Heavy Fuel Oil Gasoline Diesel Oil Kerosene/Jet Fuel LPG/Refinery Gas/Non-Energy TOTAL	Coast of the DPR vely crude fraction romit could be so us not part of trac- nd reportedly had he capacity of this power plant that is lated assumptions sed in the nearby poor condition an 19% 1,991,747 Assumptions 41% 24% 21% 5% 5%	K, except that ation or "toppe ome of the Rus le statistics), or an capacity fac refinery, but es near the refine s. power plant: d operation in a GJ, or Implied toe 50,076 29,313 43,816 11,923 50,076 185,204	r"-type refiner sian oil descri could be purc tor of stimate it belo ery site, and o <u>95%</u> a cogeneratior <u>47,572</u> Output GJ 2.15E+06 1.26E+06 1.88E+06 5.11E+05 2.15E+06	y. bed above, chased w based on the <i>Assumption</i>				
We know little about the small refinery on the West dedicated all or in part to the military, and is a relativ It is not know where the oil for this refinery comes fi or could be oil supplied in barter from China (and th on the spot market. It operates in a batch mode, ar about 20% in 2000. We do not know t on what is known about the capacity of the oil-fired following rough estimates of refinery outputs and re Fraction of heavy fuel oil produced by the refinery u Gross efficiency of power plant (assumes relatively mode to provide steam for the refinery). Implied heavy oil input to power plant: If the output of the refinery is roughly: Output (Energy fraction of input) Heavy Fuel Oil Gasoline Diesel Oil Kerosene/Jet Fuel LPG/Refinery Gas/Non-Energy	Coast of the DPR vely crude fraction romit could be so us not part of trac- nd reportedly had he capacity of this power plant that is lated assumptions sed in the nearby poor condition an 19% 1,991,747 Assumptions 41% 24% 21% 5% 5% 96%	K, except that ation or "toppe ome of the Rus le statistics), or an capacity fac refinery, but e s near the refine s. power plant: d operation in a GJ, or Implied toe 50,076 29,313 43,816 11,923 50,076 185,204	r"-type refiner sian oil descri could be purc tor of stimate it belo ery site, and o <u>95%</u> a cogeneratior <u>47,572</u> Output GJ 2.15E+06 1.26E+06 1.88E+06 5.11E+05 2.15E+06	y. bed above, chased w based on the <i>Assumption</i>				
We know little about the small refinery on the West dedicated all or in part to the military, and is a relativ It is not know where the oil for this refinery comes fi or could be oil supplied in barter from China (and th on the spot market. It operates in a batch mode, ar about <u>20%</u> in 2000. We do not know t on what is known about the capacity of the oil-fired following rough estimates of refinery outputs and re Fraction of heavy fuel oil produced by the refinery u Gross efficiency of power plant (assumes relatively mode to provide steam for the refinery). Implied heavy oil input to power plant: If the output of the refinery is roughly: Output (Energy fraction of input) Heavy Fuel Oil Gasoline Diesel Oil Kerosene/Jet Fuel LPG/Refinery Gas/Non-Energy TOTAL Implied required crude oil input to refinery	Coast of the DPR vely crude fraction romit could be so us not part of trac- nd reportedly had he capacity of this power plant that is lated assumptions sed in the nearby poor condition an 19% 1,991,747 Assumptions 41% 24% 21% 5% 5% 96%	K, except that ation or "toppe ome of the Rus le statistics), or an capacity fac refinery, but e s near the refine s. power plant: d operation in a GJ, or Implied toe 50,076 29,313 43,816 11,923 50,076 185,204 toe or GJ	r"-type refiner sian oil descri could be purc tor of stimate it belo ery site, and o <u>95%</u> a cogeneration 47,572 Output GJ 2.15E+06 1.26E+06 1.88E+06 5.11E+05 2.15E+06 7.94E+06	y. bed above, chased w based on the <i>Assumption</i>				
We know little about the small refinery on the West dedicated all or in part to the military, and is a relativ It is not know where the oil for this refinery comes fi or could be oil supplied in barter from China (and th on the spot market. It operates in a batch mode, ar about 20% in 2000. We do not know t on what is known about the capacity of the oil-fired following rough estimates of refinery outputs and re Fraction of heavy fuel oil produced by the refinery u Gross efficiency of power plant (assumes relatively mode to provide steam for the refinery). Implied heavy oil input to power plant: If the output of the refinery is roughly: Output (Energy fraction of input) Heavy Fuel Oil Gasoline Diesel Oil Kerosene/Jet Fuel LPG/Refinery Gas/Non-Energy TOTAL	Coast of the DPR vely crude fraction romit could be so us not part of trac- nd reportedly had he capacity of this power plant that is lated assumptions sed in the nearby poor condition an 19% 1,991,747 Assumptions 41% 24% 21% 5% 5% 96%	K, except that ation or "toppe ome of the Rus le statistics), or an capacity fac refinery, but e s near the refine s. power plant: d operation in a GJ, or Implied toe 50,076 29,313 43,816 11,923 50,076 185,204 toe or GJ	r"-type refiner sian oil descri could be purc tor of stimate it belo ery site, and o <u>95%</u> a cogeneration 47,572 Output GJ 2.15E+06 1.26E+06 1.88E+06 5.11E+05 2.15E+06 7.94E+06	y. bed above, chased w based on the <i>Assumption</i>				
We know little about the small refinery on the West dedicated all or in part to the military, and is a relativit is not know where the oil for this refinery comes fror could be oil supplied in barter from China (and the on the spot market. It operates in a batch mode, an about 20% in 2000. We do not know to on what is known about the capacity of the oil-fired following rough estimates of refinery outputs and refinery outputs and refiners of heavy fuel oil produced by the refinery u Gross efficiency of power plant (assumes relatively mode to provide steam for the refinery). Implied heavy oil input to power plant: If the output of the refinery is roughly: Output (Energy fraction of input) Heavy Fuel Oil Gasoline Diesel Oil Kerosene/Jet Fuel LPG/Refinery Gas/Non-Energy TOTAL Implied required crude oil input to refinery Consider 100% of these inputs to be crude	Coast of the DPR vely crude fraction romit could be so us not part of trac- nd reportedly had he capacity of this power plant that is lated assumptions sed in the nearby poor condition an 19% 1,991,747 Assumptions 41% 24% 21% 5% 5% 96%	K, except that ation or "toppe ome of the Rus le statistics), or an capacity fac refinery, but es near the refine s. power plant: d operation in a GJ, or Implied toe 50,076 29,313 43,816 11,923 50,076 185,204 toe or GJ counted for els	r"-type refiner sian oil descri could be purc tor of stimate it belo ery site, and o <u>95%</u> a cogeneration 47,572 Output GJ 2.15E+06 1.26E+06 1.88E+06 5.11E+05 2.15E+06 7.94E+06	y. bed above, chased w based on the <i>Assumption</i>				
We know little about the small refinery on the West dedicated all or in part to the military, and is a relativit is not know where the oil for this refinery comes fir or could be oil supplied in barter from China (and the on the spot market. It operates in a batch mode, an about 20% in 2000. We do not know the on what is known about the capacity of the oil-fired following rough estimates of refinery outputs and refinery outputs and refiners of heavy fuel oil produced by the refinery u Gross efficiency of power plant (assumes relatively mode to provide steam for the refinery). Implied heavy oil input to power plant: If the output of the refinery is roughly: Output (Energy fraction of input) Heavy Fuel Oil Gasoline Diesel Oil Kerosene/Jet Fuel LPG/Refinery Gas/Non-Energy TOTAL Implied required crude oil input to refinery Input of refinery fuel to refinery (own use) at	Coast of the DPR vely crude fraction romit could be so us not part of trac- nd reportedly had he capacity of this power plant that is lated assumptions sed in the nearby poor condition an 19% 1,991,747 Assumptions 41% 24% 21% 5% 5% 96% 192,920 8.08E+06 oil imports not ac	K, except that ation or "toppe ome of the Rus le statistics), or an capacity fac refinery, but es near the refine s. power plant: d operation in a GJ, or Implied toe 50,076 29,313 43,816 11,923 50,076 185,204 toe or GJ counted for else	r"-type refiner sian oil descri could be purc tor of stimate it belo ery site, and o <u>95%</u> a cogeneration 47,572 Output GJ 2.15E+06 1.26E+06 1.88E+06 5.11E+05 2.15E+06 7.94E+06	y. bed above, chased w based on the <i>Assumption</i>				
We know little about the small refinery on the West dedicated all or in part to the military, and is a relativit is not know where the oil for this refinery comes fror could be oil supplied in barter from China (and the on the spot market. It operates in a batch mode, an about 20% in 2000. We do not know to on what is known about the capacity of the oil-fired following rough estimates of refinery outputs and refinery outputs and refiners of heavy fuel oil produced by the refinery u Gross efficiency of power plant (assumes relatively mode to provide steam for the refinery). Implied heavy oil input to power plant: If the output of the refinery is roughly: Output (Energy fraction of input) Heavy Fuel Oil Gasoline Diesel Oil Kerosene/Jet Fuel LPG/Refinery Gas/Non-Energy TOTAL Implied required crude oil input to refinery Consider 100% of these inputs to be crude	Coast of the DPR vely crude fraction romit could be so us not part of trac- nd reportedly had he capacity of this power plant that is lated assumptions sed in the nearby poor condition an 19% 1,991,747 Assumptions 41% 24% 21% 5% 5% 96%	K, except that ation or "toppe ome of the Rus le statistics), or an capacity fac refinery, but es near the refine s. power plant: d operation in a GJ, or Implied toe 50,076 29,313 43,816 11,923 50,076 185,204 toe or GJ counted for else	r"-type refiner sian oil descri could be purc tor of stimate it belo ery site, and o <u>95%</u> a cogeneration 47,572 Output GJ 2.15E+06 1.26E+06 1.88E+06 5.11E+05 2.15E+06 7.94E+06	y. bed above, chased w based on the <i>Assumption</i>				

Sources/Notes:

- 1 Reference 3 reports 2.8 Mte. Note that the Korea Foreign Trade Association, in "Major Economic Indicators for North Korea", 1993. P. 33, lists a total of 2.43 million te oil, which includes imports from the former USSR, China, and Iran, but apparently does not include oil purchased On the spot market. 1990 figures. Other sources suggest that 2.8 Mte in 1990 is an over-estimate, thus
- we have assumed crude oil imports of 2.6 Mte in 1990.
- 2 Based on figures in: "Progress of Energy Saving in China's Petrochemical Industry", W.B. Shen, in Energy Markets and the Future of Energy Demand, LBL, 1988, p. 24-2.
- 3 Choi Su Young, Study of the Present State of Energy Supply in North Korea, RINU, 1993. P. 40
- 4 Young Sik Jang, North Korean Energy Economics, Korea Development Institute, 1994 (p. 62)
- 5 Exports to the DPRK from China. Source: China Customs Statistics.
- 6 Probably mostly gasoline (David Fridley, Lawrence Berkeley National Laboratory, Personal Communication).
- 7 Korean Peninsula Energy Development Organization (KEDO, 1996), <u>Korean Peninsula Energy</u> <u>Development Organization, Annual Report, 1995</u>. KEDO, Washington, D.C., July 31, 1996
- 8 Calculated estimate based on difference between estimated demand and estimated supply for heavy oil in 1996.
- 9 Note that 110% of estimated 1996 imports approximates the level of refined products imported from China (at least officially) as of 1993 (Sinton, J. (1996), <u>China Energy Databook</u>).
- 10 Net of refinery gas used in-plant, and calculated as LPG/Refinery gas-(input-other products output-refining loss)
- 11 Data for Western refinery estimates based on similar Chinese plants from David Fridley, Lawrence Berkeley National Laboratory (personal communication, 12/96). Data for Eastern (Russian-built) refinery from Source 17. Estimate from Fridley was modified by reducing heavy oil total by 7% to account for probable production of heavy non-energy products (bitumens/asphalts, petroleum coke, wax, lubricants), based very roughly on Chinese petroleum output statistics for 1990 (from Sinton, J. (<u>China Energy Databook</u>), p. II-55).
- 12 From <u>International Petroleum Encyclopedia, 1996.</u> Confirmed by other sources. East coast refinery has 7,300 barrells per day fluid cracking capacity.
- 13 Several sources have suggested that little, if any, crude oil beyond that imported from China has come into the DPRK in the last 2 years--possibly one cargo at most (which would have been refined at Sonbong), and almost certainly not in 1996.
- 14 Includes petroleum product imports reported to be "one-half of the output" of a 750,000 te (output) Chinese refinery located north of the Tumen River. This refinery is assumed to operate at a maximum of 80 percent of capacity (David Fridley, personal communication), yielding total output of 600,000 tonnes. Output shares of that refinery are assumed to be the same as in the West Coast DPRK refinery, but it is assumed that the products exported to the DPRK are weighted slightly toward diesel and gasoline and away from HFO, based on the higher need for motor fuels in the DPRK and the need for HFO to fuel power plants in adjacent areas of China. Our assumption is that 10,000 tonnes more of gasoline and of diesel are exported to the DPRK, and 20,000 tonnes less of HFO, relative to simply splitting the product slate of the refinery evenly between the two countries. For 1996, product imports also include 50,000 te each of gasoline and diesel reported to be provided by ship and rail from Russia. [Industry source--should be confirmed independently]
- [Industry source--should be confirmed independentiy]
- 15 For 2000, includes quantities reported separately from the ROK, Russia, Singapore, and Japan, plus amounts of products similar to those received in 1996 from the Chinese refinery near the border (note 14).
- 16 Assumes that the capacity of the Sonbong refinery is increased to 2.5 times its original capacity, and that "cracking" capacity is added so that the relative fractions of refined products are as shown.
- 17 Personal communication [QR 9/97].
- 18 Exports to the DPRK from China from China Customs Report 2000, pp. 1483-1495 (in Chinese).
- 19 From "Appendix 1: HFO Deliveries" of Korean Peninsula Energy Development Organization (KEDO) <u>Annual Report 2001</u>, obtained from www.kedo.org, 5/31/2002. Note that this figure is for oil actually delivered during the calendar year 2000, as two of the shipments of the "HFO Year 2000" occurred in 2001.
- 20 Industry source reports probable barter imports of oil products ("gas oil and light crude") from Russia at "less than 1.5 kbbl/day". We have assumed an average of 1500 bbl/day.
- 21 From Japan customs statistics, http://www.customs.go.jp/toukei/info/index_e.htm. Composed of a combination of products, but 99 percent by mass are in the class designated "HS# 271000400". The designation of this code appears to be (based on Singapore codes) "Kerosene and Vapourising Oil (Power Kerosene)".
- 22 Based on text in "Singapore" section of "Current Status and Features of North Korean Foreign Trade of the First Half of 2001", from www.kotra.or.kr/main/common_bbs which suggests that the maximum value of oil exports to the DPRK in the first half of 2000 would have been about \$8.5 million (but could have been considerably less). The actual data on sales of oil products from Singapore to the DPRK are available, but could not be obtained by the time of this writing.
- 23 Data from the US DOE Energy Information Administration (table http://www.eia.doe.gov/pub/oil_gas/petroleum /data_publications/weekly_petroleum_status_report/current/txt/table13f.txt) suggests that spot prices for diesel fuel and gasoline in Singapore were in the range of \$0.70 per gallon as of January, 2001. This figure is used to roughly calculate oil guantities purchased from Singapore.
- 24 An industry source suggests that the ROK sent to the DPRK a maximum of "8 10 kbbl/day of off-spec HSFO for brief periods". "Off-spec" fuels do not meet ROK specifications for quality. We assume a rate of shipment of about 10 kbbl/day for about 10 percent of 2000.
- 25 Information on this refinery from industry sources. Fuel output shares of refinery are very rough Nautilus estimates.
- 26 Assumes, based on industry sources, that very little KEDO HFO remained in storage at the end of 2000.
- 27 There have been reports that the DPRK "began to produce crude oil in a sea well off Sukchon County, South Pyongan Province" in 1998 (Lee Kyo Kwan, writing on www.chosun.com, "North Korea Exports Petroleum", probably sometime in 2001). This article suggests, without citing any figures that DPRK production was significant enough to allow the reduction of petroleum imports. We assume based on conversations with experts in the industry, that any production from DPRK wells was minimal.
- 28 Calculated based on 1990 data for China from J.E. Sinton, ed (1992). China Energy Databook.

ESTIMATED/PROJECTED ENERGY SUPPLY/DEMAND BALANCES DEMOCRATIC PEOPLE'S REPUBLIC OF KOREA (DPRK) <u>2002 UPDATE</u> ADDITIONAL BACK-UP CALCULATIONS AND DATA: OIL IMPORTS AND EXPORTS

ESTIMATE OF THE MATERIALS REQUIREMENT FOR SURFACING NEW SUPERHIGHWAY BETWEEN PYONGYANG AND NAMPO, DPRK

Prepared By David Von Hippel, 10/19/00, Modified 6/8/02: DRAFT

Asphalt paving is: 5% to 8% by weight Asphal	It Cement (see Note 1).	
Paving on the PyongyangNampo road will ultimately be:	15 cm thick (see Note	2)
Length of the PyongyangNampo road recently constructed:	43 km (Note 3)	
	ers (DVH on-site estimate)	
Specific gravity of pavement mixture (asphalt cement plus aggregate):	2.3 (Note	e 4)
	·	,
	·	
RESULTS:	ic meters, and	
RESULTS:	,	
RESULTS: Estimated volume of asphalt mixture used on road: 322,500	nes	
RESULTS: Estimated volume of asphalt mixture used on road: Stimated mass of asphalt mixture used on road: 741,750	nes	16%

NOTES AND SOURCES:

- 1 The National Asphalt Pavement Association (NAPA), whose web site I visited, defines Asphalt Cement (AC) as follows: "This is the black, sticky stuff produced by petroleum refineries. It is the "glue" that holds the pavement together. Generally, it makes up about less than 8%, by weight, of the total pavement mixture." At another asphalt-related site, I saw an estimate that AC was 5% of the weight of asphalt paving (a mixture of AC and aggregate). Information on the "FAQ" page of the Asphalt Institute WWW site (http://www.asphaltinstitute.org/faq/apcfaqs.htm#temp) suggests an intermediate concentration of
 - 400 lbs of asphalt cement to 6000 lbs of asphalt paving (or about 6.7%).
- 2 Another asphalt www site I visited suggested that 8 to 12 inches of asphalt paving (applied in at least two layers) was standard for roads used by heavy duty trucks. Where paving was observed being applied to the Pyongyang--Nampo road, the paving seemed to be thinner (perhaps 2-3 inches, or 5 to 7.5 cm), so I'm assuming both A) that a second layer would be applied, and B) that the ultimate thickness will be somewhat less than would be recommended in the US for a highway of similar size.
- In <u>DPRK YOUTH BUILD PYONGYANG-NAMPO SUPERHIGHWAY</u> by Jang Yong Chol, First Secretary, Pyongyang City Committee, Kim II Sung Socialist Youth League, for the Korean Central News Agency, Pyongyang, 28 August, 2000, reference is made to the Pyongyang-Nampo having a "40-odd km-long roadbed, scores of metres wide.." 43 km is a guess, based on my assumption that longer than 45 km would likely be referred to as "nearly 50".
- 4 Density and specific gravity of asphalt will depend on the air void volume in the mix (typically 5 to 8 percent, as based on documents reviewed) and the density and shape of the aggregate used. An example given in a document on the Asphalt Institute's WWW site has a specific gravity of 2.363. http://www.infratech.com/technical_corner/tables_calculators/metric/density_asphalt_materials.htm provides a table entitled "DENSITY AND SPECIFIC GRAVITY FOR VARIOUS TYPES OF COMPACTED ASPHALT PAVEMENTS", which gives a specific gravity range of 2.1 to 2.5 for (combined) several types of asphalt pavements. The estimate of 2.3 for DPRK asphalt is a rough guess based on this range.

ESTIMATED/PROJECTED ENERGY SUPPLY/DEMAND BALANCES DEMOCRATIC PEOPLE'S REPUBLIC OF KOREA (DPRK) <u>2002 UPDATE</u> BACK-UP CALCULATIONS AND DATA: BIOMASS AND WOOD PRODUCTION AND IMPORTS

Prepared By David Von Hippel Date Last Modified: 6/8/2002

DERIVATION OF INFORMATION PASSED TO ENERGY BALANCE SHEET, 1990

DERIVATION OF INFORMATION FASSED TO EN			Sources/Notes:
Fuelwood Consumption (Residential and Industrial)			
Residential Fuelwood	1.00E+07	cu.m.	1
Industrial Fuelwood	1.50E+05	cu.m.	1
Conversion Factor	1.50	cu.m./te	2
Conversion Factor	16.00	_GJ/te	2
Total Fuelwood Production	1.08E+08	GJ	
Charcoal Production			
Wood Input	1.00E+06	cu.m.	1
Conversion Factor	1.50	cu.m./te	2
Conversion Factor	16.00	GJ/te	2
Process Efficiency	33%		Rough Estimate
Total Wood used for Charcoal	1.07E+07	GJ	
Total Charcoal Production	3.52E+06	GJ	
Wood for Non-Energy Products			
Building Materials	5.00E+06	cu.m.	1
Pulp and Paper	5.00E+05	cu.m.	1
Conversion Factor	1.50	cu.m./te	2
Conversion Factor		_GJ/te	2
Total Wood, Non-Energy Products	5.87E+07	GJ	
Wood Imports			
Imports of wood from USSR	2.50E+06	i cu.m.	3
Conversion Factor	1.50	cu.m./te	
Conversion Factor	16.00	GJ/te	
Wood Imports, Total	2.67E+07		
Total Domestic Wood Production	1.51E+08	GJ	
Other Biomass/Crop Wastes Production for Fuel			
Crop Wastes Used in Agriculture:	3.10E+06	te	4
Crop Wastes for Other Uses	1.06E+07		Est. based on needs
Conversion Factor		GJ/te	2
Total Biomass/Crop Wastes Production	1.99E+08	GJ	
TOTAL WOOD/BIOMASS PRODUCTION	3.50E+08	GJ	

Category	1996	2000	
Domestic wood production relative to 1990	97%	95%	THIS SECTION OF
Domestic wood production (GJ)	1.47E+08	1.43E+08	
Wood used to make charcoal relative to 1990	73%	72%	THIS WORKSHEET
Wood Used to make charcoal (GJ)	7.79E+06	7.68E+06	
Charcoal production (GJ)	2.57E+06	2.53E+06	NOT USED FOR THIS
Wood imports relative to 1990	100%	100%	
Wood imports (GJ)	2.67E+07	2.67E+07	
Biomass/crop wastes production relative to 1990	97.3%	95%	0
Biomass/crop wastes production (GJ)	1.93E+08	1.89E+08	

Notes:

1 From document in authors' files [TO1, p. 22]. Upper ends of ranges.

2 From document in authors' files [FC1, p. 7].

3 Annual imports from Russia. From document in authors' files [TP1, p. 4]. Note: other sources list these imports at 230kcu.m./yr.

4 Use of straw and bran in Agriculture from document in authors' files [HT1, p. 10].

5 Assumption

6 Adjusted to meet demand.

ESTIMATED/PROJECTED ENERGY SUPPLY/DEMAND BALANCES DEMOCRATIC PEOPLE'S REPUBLIC OF KOREA (DPRK) <u>2002 UPDATE</u> BACK-UP CALCULATIONS AND DATA: ELECTRICITY GENERATION IN 1990

Prepared By David Von Hippel Date Last Modified: 10/14/1997

DERIVATION OF INFORMATION PASSED TO ENERGY BALANCE SHEET, 1990

Electricity Generation: Output by Eucl Type:		Sources/Notes:
Electricity Generation: Output by Fuel Type: Total Gross Generation	4.60E+04 GWhe	1
Fraction in Hydro Plants	46.3%	2
Fraction in Thermal Plants	53.7%	2
Generation in largest Oil-fired plant	1.28E+03 GWhe	2 3
Fraction of Oil Generation in Largest Plant		3
6	100% 2.13E+04 GWhe	4
Gross Generation, Hydro Plants		
Gross Generation, Oil Plants	1.28E+03 GWhe	
Gross Generation, Coal Plants	2.34E+04 GWhe	
Conversion Factor	3.60E+03 GJ/GWI	ne
Gross Generation, Hydro Plants	7.66E+07 GJ	
Gross Generation, Oil Plants	4.61E+06 GJ	
Gross Generation, Coal Plants	8.44E+07 GJ	
Own Use Rate, Hydro Plants	0.3%	5
Own Use Rate, Oil Plants	8.00%	9
Own Use Rate, Coal Plants	9.00%	9
Own Use, Hydro Plants	6.39E+01 GWhe	
Own Use, Oil Plants	1.02E+02 GWhe	
Own Use, Coal Plants	2.11E+03 GWhe	
Own Use, Hydro Plants	2.30E+05 GJ	
Own Use, Oil Plants	3.69E+05 GJ	
Own Use, Coal Plants	7.59E+06 GJ	
Net Generation, Hydro Plants	2.123E+04 GWhe	
Net Generation, Oil Plants	1.178E+03 GWhe	
Net Generation, Coal Plants	2.132E+04 GWhe	
Net Generation, Hydro Plants	7.64E+07 GJ	
Net Generation, Oil Plants	4.24E+06 GJ	
Net Generation, Coal Plants	7.68E+07 GJ	
MW of hydro capacity used by China	700 MW	11
Fraction of hydro generation exported in 1990	16%	12
Exports of electricity to China	3.30E+03 GWhe	
Exports of electricity to China	1.19E+07 GJ	
"Emergency Losses" Rate, Coal Plants	5%	6
"Emergency Losses", Coal Plants	1.17E+03 GWhe	0
"Emergency Losses", Coal Plants	4.22E+06 GJ	
Total Net Generation, All Plants	4.26E+04 GWhe	
Total Net Generation, All Plants	1.53E+08 GJ	
Transmission and Distribution Losses	1.552+00 05	
Transmission Losses	10%	7
	6%	7 7
Distribution Losses		/
Delivered Electricity	3.32E+04 GWhe	
Delivered Electricity	1.20E+08 GJ	
Fuel Requirements for Electricity Generation	100.000/	
"Heat Rate" (Efficiency) Hydro Plants	100.00%	8
Gross Generation Efficiency, Oil-Fired Plants	29.5%	9
Gross Generation Efficiency, Coal-Fired Plants	28.0%	10
Input Energy, Hydro Plants	7.66E+07 GJ	
Input Energy, Oil Plants	1.56E+07 GJ	
Input Energy, Coal Plants	3.01E+08 GJ	
Fraction of energy input to Coal plants as residual oil	2.0%	Assumption
Oil input to coal plants	6.03E+06 GJ	
Total Input Energy, Electricity Generation	3.94E+08 GJ	

Sources/Notes:

- 1 Choi Su Young, <u>Study of the Present State of Energy Supply in North Korea</u>, RINU, 1993. P. 49. "Official NK Figures"
- 2 Figures from document in authors' files [EE1, p. 15].
- 3 For Oung gi plant, one of (possibly) 2 grid-connected oil-fired plants. From document in authors' files [EE1, p. I-2].
 4 The Oung gi plant is 200 MW. The second oil-fired plant listed by some sources must be quite small,
- *if indeed it exists.* Other sources claim that there is only one oil-fired plant in the DPRK, which we have assumed. 5 ROK rates in 1970. From p. 129,E-W.Kim et al, "The Electric Future of Korea" East-West Center,
- September, 1983. Own use rates for Chinese coal-fired plants are very slightly higher. 6 Rough estimate. A note in document in authors' files [EE1, p. 26]
- put the loss from "frequent emergencies" at Pyongyang power station at 7%. It is not clear whether this value is typical for the DPRK system as a whole.
- 7 Official Estimates. From document in authors' files [EP1, p. 3]. This source notes that these estimates may be optimistic.
- 8 As used in United Nations Energy Statistics Yearbook.
- 9 Author's estimate. Official rate of approximately 35% (as presented in UNDP (1994), <u>Studies in Support</u> of Tumen River Area Development Programme. Prepared by KIEP, Seoul, ROK for the UNDP, July, 1994) seems somewhat high given the reported condition of the power plant at Sonbong.
- 10 This rate is somewhat lower than that given for the Chongjin plant in source 9, and similar to the heat rates in Chinese coal plants in the late 1970's.
- 11 See "Energy Generation Facilities" sheet.
- 12 Assumes that exported electric energy is proportional to the fraction of capacity earmarked for Chinese use.

ESTIMATED/PROJECTED ENERGY SUPPLY/DEMAND BALANCES DEMOCRATIC PEOPLE'S REPUBLIC OF KOREA (DPRK) <u>2002 UPDATE</u> BACK-UP CALCULATIONS AND DATA: ELECTRICITY GENERATION FACILITIES

MAJOR THERMAL GENERATING FACILITIES

			Capacity		Year	
#	Name		(MW)	Fuel	Completed	Sources/Notes:
1	Pyongyang		500	Coal	1968	1
2	Bukchang		1600	Coal	1985	1,2,7
3	Chongjin		150	Coal	1984	1,2
4	Chonchonang		200	Coal	1979	1,2
	Oungi		200	Oil	1973	2
6	Sunchon		200	Coal	1988	1
7	East Pyongyang		50	Coal	1992	3
TOT	AL OF LISTED PLA	NTS	2900			

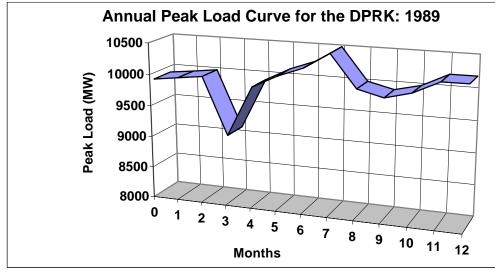
THERMAL GENERATING FACILITIES REPORTEDLY UNDER CONSTRUCTION OR RECENTLY COMPLETED AS OF 1996

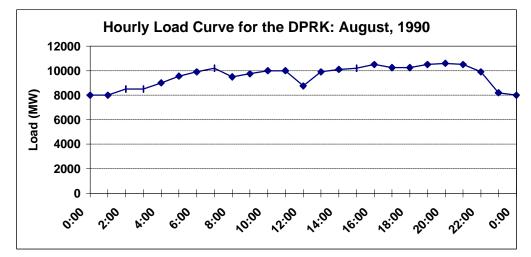
	Capacity		Year	Year	
# Name	(MW)	Fuel	Started	Completed	Sources/Notes:
1 Pyunghung(?)	200	Coal			8
2 Suncheon(?)	200	Coal			8,12
3 Dongpyungyang	600	Coal		1993 - 1996	13
4 Kimchaek	150	Coal	1988		2
5 Hamhyng central	100	Coal	1994		2
6 12wol	150	Coal		1993	13
7 Haeju	Unknown	Coal	1990		13
8 Ahnju	1200	Coal	1989		13
9 Hamheung	150	Coal	1989		13, 14
TOTAL OF LISTED PLANTS	2,750				

MAJOR HYDRO GENERATING FACILITIES

	Capacity	Year	Year	
# Name	(MW)	Completed	Refurbished	Sources/Notes:
1 Supung	400			1,2,4
2 Kymgansang cascade	13.5	1930	1958	2
3 Puren cascade	28.5	1932		2
4 Puch'on-gang	260	1932	1956	2,11
5 Chanjin-gang	390	1936	1958	2
6 Hoch'on-gang	394	1942	1958	2
7 Tonno-gang	90	1959		2
8 Kangae	246	1965		2
9 Ounbong	200	1970		2,5
10 Sodusu-1	180	1974		2,9
11 Sodusu-2	230	1978		2,9
12 Sodusu-3	45	1982		2,9
13 Taedong-gang	200	1982		2
14 Mirim	32	1980		2
15 Ponhwa	32	1983		2
16 Hwan-gang	20	198?		2
17 Tonhwa	20	198?		2
18 T'aep'enmang	90	1989		2,6
19 Weewong	200	1989		2,10
20 Nam-gang	200	1994		2
21 Dokro river	36			2,8
TOTAL OF LISTED PLANTS	3,307			

HYDRO GENERATING FACILITIES REPORTEDLY UNDER CONSTRUCTION OR RECENTLY COMPLETED AS OF 1996


	Capacity	Year	Year	
Name	(MW)	Started	Completed	Sources/Notes:
1 Taechun	750	1983		2, 8, 15
2 Kumgang Mountain	800	1985	1996 (1st Phase)	2,8,13,16
3 Sodusu-4	200	1990	. ,	2
4 Namkang	Unknown	1983		13
5 Youngwon	Unknown	1986		13
6 Ehrangcheon	Unknown	1986		13
7 Jabgjakang	240			13
8 P'och'on	820			2
9 Oranch'on	180			2
10 Heech'on	Unknown	1989		2
11 Kymyan-gang	Unknown			2
FOTAL OF LISTED PLANTS	2,990			


PARTIAL LISTING OF SUBSTATIONS IN THE DPRK

		Capacity		
#	Name	MVA	Units	Sources/Notes:
1	Changjingang	48	1x28, 1x20	1
2	Chongjin	165	1x100, 1x5, 1x60	1
3	Pyongyang No. 2	100	2x50	1
4	Vynalon	200	2x50, 1x100	1
5	Pyongyang No. 1			1
6	Undok			1
7	Munsan			1
8	Kilju			1
9	Hamhung			1
10	Songchon			1
11	Sepo			1
12	Nampo			1
13	Kusong			1
14	Sinuiju			1
15	Pyongsong			1
16	Sin-Anju			1

LIST	ING OF PROVINC	IAL CONTROL CENTEI	RS FOR THE DPRK T&D GRID					
Sour	Source 1							
#	Name	Location (city)						
1	North Kamgyong	Chongzin						
2	Ryanggang	Hyesan						
3	Chagang	Kanggye						
4	South Hamgyong	Hamhung						
5	South Pyongan	Pyongsong						
6	Kangwon	Wonsan						
7	North Hwanghae	Sariwon						
8	Nampo	Nampo						
9	South Hwanghae	Haeju						
10	Kaesong	Kaesong						
11	North Pyongan	Siniju						

Annual Lo	ad Curv	ve for 1989		Daily Load Curve for August, 1		
(Source 1)				(Source 1)		
Month		Load (MW)		Time	Load (MW)	
	0	9900		0:00	8000	
	1	9950		1:00	8000	
	2	10000		2:00	8500	
	3	9100		3:00	8500	
	4	9900		4:00	9000	
	5	10100		5:00	9550	
	6	10250		6:00	9900	
	7	10500		7:00	10200	
	8	10000		8:00	9500	
	9	9900		9:00	9750	
	10	10000		10:00	10000	
	11	10200		11:00	10000	
	12	10200		12:00	8750	
			-	13:00	9900	
				14:00	10100	
				15:00	10200	
				16:00	10500	
				17:00	10250	
				18:00	10250	
				19:00	10500	
				20:00	10600	
				21:00	10500	
				22:00	9900	
				23:00	8200	
				0:00	8000	

Sources/Notes:

- 1 Documents in authors' files [EP1, EE1]
- 2 Moiseyev, V. (1996), The Electric Energy Sector of the DPRK.
- Paper presented at the workshop on "Security on the Korean Peninsula," November 21, 1996, Diplomatic Academy, Moscow, sponsored by the Center for Nonproliferation Studies at the Monterey Institute of International Studies (with funding from the Rockefeller Foundation).
- 3 Source 1 reports 50 MW of East Pyongyang plant completed in 1992. Source 2 suggests that the ultimate capacity of the plant will be (or was to have been) 400 MW
- 4 Source 2 lists the "Supun" plant as having a total capacity of 735 MW, with 210 MW of that capacity used to produce power for China.
- 5 Source 2 lists this plant as having a total capacity of 400 MW, with 200 MW going to China.
- 6 Source 2 lists this plant as having a total capacity of 190 MW, with 100 MW going to China.
- 7 Source 1 lists the in-service date of the Bukchang station as 1973. This may be the in-service date for the first of the units. (Plant name may also be translated as "Pukchang".)
- 8 Choi Su Young (1993), Study of the Present State of Energy Supply in North Korea, Research Institute for National Unification (RINU), Seoul, (ROK).
- 9 Source 8 lists the total capacity of the three phases of the Sodusu plant at 510 MW. Source 17 lists the plant capacity as 420 MW.
- 10 Source 2 lists this plant as having a total capacity of 390 MW, with 190 MW going to China.
- 11 Capacity listed by source 8 as 226 MW
- 12 Source 8 seems to indicate that this plant will be associated with an industrial facility making vinalon.
- 13 Dongseok Roh, Electricity Policy Division, Korea Energy Economics Institute (KEEI). Personal Communication, 1996.
- 14 This plant may well be the same as the project listed by source 2 as "Hamhyng central".
- 15 Source 8 lists the total capacity of this project at 800 MW. Source 13 describes the "first phase" as having a capacity of 660 MW.
- 16 Source 2 lists the capacity of this project at 810 MW. The first phase of the project, reportedly in the range of 100 to 200 MW, was reportedly brought on line in late 1996.
- 17 UNDP (1994), Studies in Support of Tumen River Area Development Programme. Prepared by KIEP, Seoul, ROK for the UNDP, July, 1994.

ESTIMATED/PROJECTED ENERGY SUPPLY/DEMAND BALANCES DEMOCRATIC PEOPLE'S REPUBLIC OF KOREA (DPRK) <u>2002 UPDATE</u> ASSUMPTIONS, BACK-UP CALCULATIONS AND DATA: ELECTRICITY GENERATION AND FUEL REQUIREMENTS IN 1996 AND 2000

ESTIMATE OF ELECTRICITY GENERATION IN 1996				
				Sources/Notes:
	Hydro Plants	Coal Plants	HFO Plants	
Electricity Generating Capacity as of 1990 (MW)	4,500	3,200	200	4
Estimated Gross Generation in 1990 (GWHe)	2.129E+04	2.34E+04	1.28E+03	Based on 1990 est.
Implied Capacity Factor, 1990	54%	84%	73%	
Changes in Capacity, 1990 to 1996 (MW):	-3250	50	0	5
Average 1996 Capacity Factor Relative to 1990 Est.	90%	66.00%	71.2%	3
Estimated Gross Generation in 1996 (GWHe)	5.32E+03	1.57E+04	9.11E+02	
Estimated Power Exports to China, 1990 (GJ)	1.19E+07			
Fraction of 1990 Exports to China in 1996	28%			
Estimated Power Exports to China, 1996 (GJ)	3.33E+06			
Gross Generation Efficiency, 1996	100%	27.0%	28.00%	2
Fuel Input to generation, 1996 (GJ)	1.92E+07	2.09E+08	1.17E+07	
Fraction of fuel input as HFO	N/A	6.20%	100%	1
HFO Input to generation, 1996 (GJ)	N/A	1.30E+07	1.17E+07	
Own Use Fractions, 1996	0.30%	9.00%	8.00%	Based on 1990 est.
Own Use of Electricity (GJ)	5.75E+04	5.09E+06	2.62E+05	
"Emergency Loss" Fractions, 1996	0%	7.5%	0%	50% higher than 1990
Emergency Losses, 1996 (GJ)	0	4.24E+06	0	
Transmission and Distribution Loss rate (overall), 1996	23.10%			50% higher than 1990
Transmission and Distribution Losses, 1996 (GJ)	1.52E+07			

ESTIMATE OF ELECTRICITY GENERATION IN 2000

	Hydro Plants	Coal Plants	HFO Plants	
Changes in Capacity, 1990 to 2000 (MW):	-1400	150	69.8	Total capacity, not just operable
Average 2000 Capacity Factor Relative to 1990 Est.	67%	11%	9%	CF based on total capacity
Estimated Gross Generation in 2000 (GWHe)	9.85E+03	2.64E+03	1.48E+02	
Gross Generation Efficiency, 2000	100%	21.0%	20.54%	
Fuel Input to generation, 2000 (GJ)	3.54E+07	4.53E+07	2.59E+06	
Fraction of fuel input as HFO	N/A	28.30%	100%	
HFO Input to generation, 2000 (GJ)	N/A	1.28E+07	2.59E+06	
Other Petrol Products (tires) input to gen., 2000 (GJ)	N/A	8.70E+05		
Estimated Power Exports to China, 1990 (GJ)	1.19E+07			
Fraction of 1990 Exports to China in 2000	0.7%			Based on reported exports
Estimated Power Exports to China, 2000 (GJ)	8.16E+04			
Own Use Fractions, 2000	0.30%	9.00%	8.00%	Same as in 1990
Own Use of Electricity (GJ)	1.06E+05	8.56E+05	4.26E+04	
"Emergency Loss" Fractions, 2000	0%	10.0%	0%	One-third higher than in 1996
Emergency Losses, 2000 (GJ)	0	9.51E+05	0	
Transmission and Distribution Loss rate (overall), 2000	26.57%			15% higher than 1996
Transmission and Distribution Losses, 2000 (GJ)	1.16E+07			

Co	Conversion Factor:		toe/te		
	onversion Factor:		GJ/toe		
				-	
		Assumed Gross	Implied Max.	Max. Listed	Max.
Plant	Rating (MWe)	Generation Eff.	fuel use (GJ/mo.)	HFO (te/mo.)	Fract. HFO
Pyongyang					
as start-up fuel	500	27.0%	4.87E+06	2,500	2.15%
as supplement	500	27.0%	4.87E+06	17,000	14.62%
Ch'ongjin	150	27.0%	1.46E+06	10,000	28.66%
Pukchang	1600	27.0%	1.56E+07	20,000	5.37%
Sunchon	200	27.0%	1.95E+06	2,000	4.30%
East-Pyongyang	150	30%	1.31E+06	3,000	9.55%
TOTAL	2600		2.52E+07	52,000	8.65%

E					
ľ	Back-up Calculation: Actual KEDO Fuel Input to Pow	er Facilities in 199	6 (1	1/95 throug	gh 10/96)
	Chongjin	3,755	te		з
	Pyongyang	44,842	te		3
	Pukchang	20,065	te		3
	Estimated KEDO HFO used, nominally	coal-fired plants:		68,662	te
	Estimated KEDO HFO used, nominally	coal-fired plants:		2.87E+06	GJ
	Sonbong	279,891	te		3
	Estimated KEDO HFO used, Sonbong	oil-fired plant:		1.17E+07	GJ
	Implied average capacity factor at Son	bong plant, 1996:		52.0%	4

Sources/Notes:

1 Assumes start-up and fuel supplement use of HFO in coal plants at over 6 percent of total thermal input.

- 2 Hydro set at 100 percent for accounting purposes. Coal and oil as described in estimates made for 1990, except efficiency reduced to reflect deterioration of infrastructure.
- 3 Figures of 75 percent and 100 percent of 1990 capacity factors for oil-fired plants and hydroelectric plants are assumptions. Factor for coal-fired stations is used to balance demand with net generation.
- 4 Assumes UN estimate of 4500 MW hydro and 5000 MW thermal. For reference, the sum of the capacities of the seven largest thermal plants was reported to be 2900 MW. There is by at least one report one other oil-fired, grid-connected plant in addition to Sonbong, but other reports state that the plant at Sonbong is the only active oil-fired plant of any size in the DPRK--which has been our working assumption.
- 5 Information from one source is that "one or two" "small to medium" (less than 10 MW) hydro plants were damaged in the floods of 1995 and 1996. Another source states that there has without doubt been substantial flood damage, including reservoir siltation and other problems. We assume that the net impact of flood damage and opening of a new hydro facility at Kumgang Mountain has been the effective reduction in hydro capacity shown. For thermal facilities, we assume (and have been told) that the addition of one 50 MW unit of the 150 MW plant under construction at East Pyongyang is the only recent major change.

6 Assumes a slight improvement as a result, for example, of lessons learned in ongoing UNDP program.

7 Year 2000 losses assumed to be an additional 5 percent higher than in 1996, due to continuing deterioration of electricity transmission and distribution system.

ESTIMATED/PROJECTED ENERGY SUPPLY/DEMAND BALANCES DEMOCRATIC PEOPLE'S REPUBLIC OF KOREA (DPRK) <u>2002 UPDATE</u> ASSUMPTIONS, BACK-UP CALCULATIONS AND DATA: ELECTRICITY GENERATION IN 2000

Prepared by David Von Hippel Date Last Modified: 2/24/2003

Estimate of Status of Electricity Generating Plants as of 2000 (see Note 1)

r						
			• • •	Capacity		
		<u> </u>	Operable	Factor	Estimated	
		Original	Capacity	(fraction of	2000	
	Design	Capacity	as of	operable	output	
Plant Name/Group	Fuel	(MW)	2000	capacity)	(GWh)	Notes
Thermal Power Plants				(Note 3)		
Oungi (Sonbong refinery)	HFO	200	-	0%	-	Not in operation since 1999
(Plant associated with small W Coast Refinery)	HFO	60	60	20%	105	Operable capacity not from Source 1 estimate assuming full capacity available, but plant may have heat exchanger problems. Much of output may be dedicated to nearby refinery.
Coast Reinery)	HFU	60	60	20%	105	3x100 MW units in operation, further 40% reduction in capacity due to heat
Pukchang	Coal	1,600	180	45%	710	exchanger problems.
Pyongyang	Coal	500	190	45%	749	
East Pyongyang	Coal	100	40	45%	158	
Taechon	Coal	200	50	45%	197	
Songlim (internal combustion)	HFO/diesel	9.8	9.8	50%	43	Capacity factor rough estimate
Songlim	Coal	100	-	0%	-	Plant reportedly not operating
Sariwon	Coal	100	-	0%	-	Plant reportedly not operating
Sunchon	Coal	100	-	0%	-	Plant reportedly not operating
Total of Above		2,970	530		1,961	
						Operable capacity not from Source 1 estimate assuming full capacity
Thermal Capacity included in						available, but down-rated by 40%
1996 estimate but not in the						because plants likely have heat
above:	Coal	350	210	45%	828	exchanger problems.
Total of Large Thermal		3,320	740	43%	2,789	

Diant Location (Optioner)	Design	Original Capacity	Operable Capacity as of	Estimated Capacity Factor (fraction of operable	output	Netes
Plant Location/Category	Fuel	(MW)	2000	capacity)	(GWh)	Notes
Hydro Power Plants		700	700	47 50/	4 070	
Plants on Chinese Border	Hydro	700	700	17.5%	1,073	See Note 2
Other Hydro Plants as of 1996	Hydro	3,925	2,944	34%	8,774	Assumes about 75% of non-border- region capacity is operable (or that the average available capacity is 75% of nameplate), and capacity factor is 70% of 1996 estimate.
Total Estimated Operable Hydro Capacity		4,625	3,644	31%	9,847	Excludes portion of capacity at Chinese border used exclusively by China.
TOTAL IMPLIED DPRK ELECTRICITY OUTPUT, 2000					12,636	GWH (see Note 4)

Recorded Electricity Exports to China

22.66 GWh **(see Note 5)** 8.70E+05 GJ

L

Input of used tires as fuel for electricity generation

(See Notes 6 and 7)

Sources/Notes:

- 1 Information on status of electricity generating facilities from an industry source, except as noted below.
- 2 An industry source with knowledge of operating procedures for the hydroelectric power plants along the China/DPRK border estimates that there are approximately 700 MW of capacity providing power to the DPRK from the 4 hydroelectric cascades on the rivers that form the border between the DPRK and China. Further, this capacity, if it was damaged in the floods of the mid-1990s, is now operational. Standard procedures for operating the shared hydro capacity on the DPRK/China border is to run the plants on a peaking basis (low capacity factor) except for August, when rivers are full and the plants are run at full capacity. Availability of water thus limits output. As 2000 was reportedly a relatively low water year (perhaps 70% of normal), we assume that the average capacity factor for these plants was 10% for all months except August, and thus the overall annual average capacity factor was approximately 17.5%.
- 3 An estimated 50% capacity factor for the operable thermal units is roughly consistent with the level of output we assumed for 1996, with some reduction to account for difficulties in obtaining coal supplies. Still, 50 percent may be a generous estimate. By way of comparison, the KEEI data set provided to Nautilus (workbook titled "DPRK Energy Data", based on information from the ROK National Statistics Office) suggests total (probably not all operable) thermal capacity of 2960 MW, and output of 9200 GWh, for an average capacity factor of 35 percent. The average hydroelectric capacity factor from the same source for 2000 is 25%.
- 4 This total is lower than the 19.3 TWh quoted by The Wall Street Journal (Jay Solomon, "EUROPE ENGINEERS WAIT FOR U.S. MOVE TO OFFER ENERGY HELP TO NORTH KOREA," Seoul, 03/21/01) as having been estimated by Siemens AG, and is also lower than the 19.4 TWh estimated production in 2000 as provided in the KEEI data set described in Note 3. The total, however, does not seem unreasonable given the difficult status of the power generation and fuel supply infrastructure in the DPRK described by recent visitors. The total calculated also is similar to the value (apparently) attributed to "ROK Officials" by the Associated Press in a 1998 article focusing on potential South-North Power Transfers ("KOREA ELECTRIC POWER CHIEF OFFERS SURPLUS POWER TO N. KOREA," Seoul, 06/08/98) as "most of the DPRK's power plants are fossil-fired and only produce about 1.5 million kilowatts daily, about one- fifth of their total capacity, because of fuel shortages". If the reference here, which is not entirely clear, is interpreted to mean that the average output of DPRK electricity plants was 1500 MW as of mid-1998, the implied total annual generation would be about 13 TWh.
- 5 Exports from the DPRK to China from <u>China Customs Report 2000</u>, pp. 1483-1495 (in Chinese).
- 6 Source from the industry reports that the DPRK likely received a total of 25,000 tonnes of used auto tires from Japan and Taiwan in 2000 for use as a supplemental boiler fuel. The DPRK has reportedly been requesting similar cargoes from Europe.
- 7 Oxford Recycling Inc. (http://www.oxfordrecycling.com/product.html#5, visited 6/8/02) lists a fuel energy content of

 15,000
 Btu/lb, or
 34.82
 GJ/tonne, for fuel from shredded tires. the same source lists a sulfur content of

 1.30%
 for the same fuel.

ESTIMATED/PROJECTED ENERGY SUPPLY/DEMAND BALANCE DEMOCRATIC PEOPLE'S REPUBLIC OF KOREA (DPRK) <u>2002 UPDATE</u> BACK-UP CALCULATIONS AND DATA: INDUSTRIAL SECTOR ENERGY DEMAND

Prepared By David Von Hippel Date Last Modified: 10/1/1997

DERIVATION OF INFORMATION PASSED TO ENERGY BALANCE SHEET, 1990

GENERAL ASSUMPTION:	a ha 10% mars anarry intensive they	in China				
DPRK Industrial processes assumed						
when Chinese intensities are used, ar		15% more energy intensive than in Russia				
	when Russian intensities a					
Cool Concumption All Industries	Notes/Sources	<u>s:</u>				
Coal Consumption, All Industries All Coal Consumption: Iron and Steel	5.47E+08					
All Coal Consumption: Iron and Steel Annual Steel Production:	7.00E+06 Te 4					
	7.00E+06 Te 4 1.64 tce/Te Steel 6					
Coal Use intensity:						
Total Coal Use:	3.79E+08 GJ coal					
Coking Coal Consumption: Iron and Steel						
Coking Coal Use intensity:	0.79 tce/Te Steel 5					
Conversion Factor:	29.3 GJ/tce					
Total Coking Coal Use:	1.78E+08 GJ coal					
Other Coal Consumption: Iron and Steel						
Coal Use intensity:	0.85 tce/Te Steel 45					
Conversion Factor:	29.3 GJ/tce					
Total Other Coal Use:	2.00E+08 GJ coal					
Coal Consumption: Cement						
Annual Cement Production:	1.39E+07 Te 1					
Coal Use intensity:	6.9 GJ/te clinker 2					
Fraction of fuel needs by coal	91% 46					
Total Coal Use:	8.71E+07 GJ/yr					
Coal Consumption: Fertilizers						
Annual Fertilizer Consumption:	6.00E+05 Te Nitrogen 12					
Annual Fertilizer Imports	1.00E+05 Te Nitrogen 43					
Annual Ammonia prod capacity	5.80E+05 te/yr 30					
Annual Urea Production capacity	1.35E+06 te/yr 30					
Ratio of Ammonia Mass to N	1.214					
Ratio of Urea Mass to N	2.50					
Capacity Utilization Factor	49%					
Estimated Ammonia Production	2.85E+05 te/yr					
Estimated Urea Production	6.63E+05 te/yr					
Total coal use/te NH ₃	2 te/te 29					
Fraction coal used as feedstock:	50%					
Conversion factor:	25.1 GJ/te 29					
Coal Use, Ammonia Production	1.83E+07 GJ/yr for energy 29					
Coal Use, Ammonia Production	1.83E+07 GJ/yr as feedstock					
Annual Superphosphate product.	2.47E+05 te 35					
Fract. Phosphorus in Superphos.	44%					
Energy int., phosphorous prodn.	8.83 tce/te 36					
Conversion Factor:	29.3 GJ/tce					
Total Coal Use, Superphos prodn.	5.70E+06 GJ/yr (net of elect. use) 36					
Total Coal Use, fertilizer prodn.	1.83E+07 GJ/yr-non-energy feedstock					
Total Coal Use, Fertilizer Prod.	2.40E+07 GJ/yr-as fuel					
Coal Consumption: Other Chemicals						
Annual Carbide production:	3.50E+05 te (from coal, Hamhung) 31					
Coal Use, carbide production:	0.96 te/te Ca Carbide					
Conversion factor:	25.1 GJ/te coal 29					
	8.43E+06 GJ/yr					
Total Coal Use, Carbide Prod:						
Caustic Soda Production:	9.86E+04 33					
Therm. En. Int., caustic soda prod.:	14.64 th GJ/te caustic soda 44					
Boiler efficiency	60% thermal GJ/tce Assumption					
Total Coal Use, caustic soda prod.:	2.77E+06 GJ/yr					
Total Coal Use, Unspec. Chem:						
Total Coal Use, Other Chem.:	1.12E+07 GJ/yr					

Coal Consumption: Pulp and Paper		
Paper production:	1.82E+05 Te	
Wood Pulp/Unit Paper	0.85 Te/Te	
Fraction of fuel needs by coal	50%	1
Ratio of fuel use to electr. use:	0.001061 tce/kWh	1
Conversion factor:	29.3 GJ/tce	
Total Coal Use:	4.03E+06 GJ/yr	
Coal Consumption: Other Metals		
Zinc Production	1.70E+05 Te	1
Copper Production	2.90E+04 Te	1
Aluminum Production	2.10E+04 Te	1
Lead Production	8.40E+04 Te	1
Zinc Coal Use intensity:	2.47 tce/te	2
Copper Coal Use intensity:	1.705 tce/te	1
Aluminum Coal Use intensity:	1.916 tce/te	1
Lead Coal Use intensity:	2.693 tce/te	2
Coal Use, Zinc Production	4.20E+05 tce	-
Coal Use, Copper Production	4.94E+04 tce	
Coal Use, Aluminum Production	4.02E+04 tce	
Coal Use, Lead Production	2.26E+05 tce	
Conversion factor:	29.3 GJ/tce	
Total Coal Use: Other Metals	2.37E+07 GJ	
	2.37E+07 GJ	
Coal Consumption: Other Minerals		4
Magnesia Production	1.00E+06 Te	4
Magnesia Production assumed Oil-b		
Coal Use, Other Minerals	0.00E+00	
Coal Consumption: Textiles		
Textile Production	5.20E+08 running meters	
Average textile weight	2.47E-04 te/running meter	2
	-	2
Coal use, printing and dyeing	4.39E-04 tce/running meter	3
Coal Use "vinalon" fiber Conversion factor:	7.04 te coal/te 25.104 GJ/te coal	
		2
Conversion factor:	29.3 GJ/tce 2.94E+07 GJ	
Total Coal Use: Textiles	2.94E+07 GJ	
Cool Concumption: Building Materials		
Coal Consumption: Building Materials	8 07E 107 Cases	3
Glass production in China, 1990	8.07E+07 Cases	
Population of China, 1990	1.14E+09 People	3
Per Capita Glass prod., China	7.06E-02 Cases/Person	-
DPRK Population, 1990	2.20E+07 People	3
Est. Glass production, DPRK	1.55E+06 Cases	
Coal Consumption Intensity/Case	30.85 kgce/case	2
Conversion factor:	29.3 GJ/tce	
Total Coal Use: Glass Production	1.40E+06 GJ/yr	
	4.49E+11 Pieces	3
Brick Production in China, 1990		
Per Capita Brick production in China, 1990	392 Pieces/Person	
	8.63E+09 Pieces	
Per Capita Brick product., China Est. Brick production, DPRK	8.63E+09 Pieces	3
Per Capita Brick product., China Est. Brick production, DPRK Coal Consumption Intensity	8.63E+09 Pieces 2390 kgce/10,000 pieces	3
Per Capita Brick product., China Est. Brick production, DPRK	8.63E+09 Pieces	3
Per Capita Brick product., China Est. Brick production, DPRK Coal Consumption Intensity	8.63E+09 Pieces 2390 kgce/10,000 pieces	3
Per Capita Brick product., China Est. Brick production, DPRK Coal Consumption Intensity Total Coal Use:Brick Production	8.63E+09 Pieces 2390 kgce/10,000 pieces 6.04E+07 GJ/yr	3

Consumption, Cement:			
Fraction of heat input provided by oil	9%	0.14.17	46
Heavy Fuel oil use, cement product. Consumption, Other Minerals:	8.61E+06	GJ/yr	
Magnesia Production	1.00E+06	Te	40
Magnesia Coal Use intensity:		GJ/te	41
Hvy Fuel Oil Use, Magnesia Prod.	1.26E+07		
Consumption: Non-specified Ind. (Diesel):	3.50E+06	GJ Pla	aceholder value
Consumption: Non-specified Ind. (Hvy Oil):	4.00E+05		aceholder value
Consumption, All Industries	2.51E+07	GJ	
ood Consumption: Non-specified Industry			
Fuelwood consumption	1.50E+05		23
Conversion Factor	1.50E+00		24
Conversion Factor	1.60E+01		24
Total Fuelwood Consumption	1.60E+06	GJ	
ectricity Consumption, All Industries ectricity Consumption: Iron and Steel	6.54E+07		
Electricity Use intensity:	700.0	kWh/te crude steel	47, 8
Conversion Factor	3.60E-03		47,3
Total Electricity Use:	2.03E+07		
ectricity Consumption: Cement	2.002.0.		
Electricity Use intensity:	100.0	kWh/te cement	3
Conversion Factor	3.60E-03	GJ/kWh	
Total Electricity Use:	5.50E+06	GJ/yr	
ectricity Consumption: Fertilizers			
Electricity Use intensity:		MWh/te Ammonium	29
Conversion Factor	3.60E+00		
Electricity Use, Ammonium Prod. Electricity Use intensity:	1.26E+07	MWh/te phosphorous	3
Electricity Use, Superphos. Prod.	6.30E+06		5
Total Electricity Use:	1.89E+07		
ectricity Consumption: Other Chemicals			
Elect. Use, Carbide production:	4571	kWh/te Ca Carbide	3
Conversion factor:	3.60E-03	GJ/kWh	
Total Elect. Use, Carbide Prod:	5.76E+06		
Elect. Use, Caustic Soda prod.:	2413	kWh/te	32
Total Elect., Caustic Soda Prod:	8.57E+05		
Total Elect. Use, Unspec. Chem:			
Total Elect. Use, Other Chem.:	6.62E+06		
ectricity Consumption: Pulp and Paper			
Electricity Use intensity:		kWh/te pulp	:
Conversion Factor	3.60E-03		
Total Electricity Use:	9.32E+05	GJ/yr	
ectricity Consumption: Other Metals	2044	141A/b/ba	2
Zinc Elect. Use intensity:		kWh/te	20
Copper Elect. Use intensity: Aluminum Elect. Use intensity:		kWh/te kWh/te	1
Lead Elect. Use intensity:		kWh/te	2
Elect. Use, Zinc Production	6.53E+08		2
Elect. Use, Copper Production	3.60E+07		
Elect. Use, Aluminum Production	3.37E+08		
Elect. Use, Lead Production	1.55E+07		
Conversion factor:	3.60E-03		
Total Elect. Use: Other Metals	4.13E+06		
ectricity Consumption: Other Minerals		,	
Magnesia Elect. Use intensity:	100.0	kWh/te Magnesia	4
Conversion Factor	3.60E-03	-	
Elect. Use, Magnesia Production	3.96E+05	GJ/yr	
ectricity Consumption: Textiles			
Elect. Use, Vinalon production	5400	kWh/te	3
Conversion factor:	3.60E-03		
Total Electricity Use: Textiles	2.50E+06	GJ/yr	
ectricity Consumption: Building Materials			
Electricity Int., Glass Production		kWh/case	20
Conversion factor:	3.60E-03		
Electricity Use: Glassmaking	1.72E+05		
Total Elect. Use: Bldg. Materials	1.89E+05		
ectricity Consumption: Non-specified Industry		6.00E+06 GJ	2

Notes/Sources:

- 1 National Report of DPRK to UNCED, 1992.
- 2 Based on document in authors' files [CE1]. which cites 1645 kcal/kg "clinker". This is somewhat higher than a figure given for the Chinese cement industry, but only about 5% higher than the 1980 average for Russian cement plants.
- 3 Approx 1981 fig., China "Physical Intensity of Selected Industrial Products" Spreadsheet printout from J. Sinton, LBL
- 4 Assumes figure (1989) is for crude steel. Source: document in authors' files [IF1].
- 5 1987 fig. for "Key, Medium, and Small" plants in China is 890 kWhe/te. Source: "The Energy Efficiency of the Steel Industry in China", M. Ross and L. Feng, Energy, 1991. Also see note 6.
- 6 Note that this figure is about 30% higher than 1987 Average Chinese energy intensities.
- 7 Economist Intelligence Unit, "China, North Korea Country Profile 1992-93", p.72 (Original Source, "Industry of the DPRK" by M. Trigubenko).
- 8 Approximation based on author's experience. Remainder of paper weight is chemicals and binders, such as clay.
- 9 Chinese 1985 value: "Physical Intensity of Selected Industrial Products" Spreadsheet printout from J. Sinton, LBL V. Kalashnikov (personal communication, 9/97) suggests that the Russian historical average for electricity use in papermaking is somewhat lower--671 kWh/te paper (not pulp) as of 1965. We use the Chinese value here.
- 10 Working assumption, no data. Rest of fuel would probably be wood-derived.
- 11 For Chinese plants, 1980. Sum of non-electric fuel use (mostly coal) per kWh electricity used. Source: China Energy Databook, 1992 Edition, page IV-30
- 12 Based on document in authors' files [HA1]. Figure is probably from 1989 or 1990, and is generally consistent with other estimates and official figures for fertilizer production and consumption.
- 13 Ammonia, med. plants, tot. energy use; and elect. gen. eff. From "Physical Intensity of Selected Industrial Products" Spreadsheet printout from J. Sinton, LBL. Figures are for 1981 Chinese plants.
- 14 Assumes all non-electric energy use is coal. Subtracts coal input to electric power plants from total energy use.
- 15 Economist Intelligence Unit, "China, North Korea Country Profile 1992-93", p.72
- (Original Source, "Industry of the DPRK" by M. Trigubenko). Data for 1990. 16 For aluminum oxide production (not clear if per te AIOx or AI), China, 1990.
- [Chinese data compendium provided by J. Sinton], p. 2.
- 17 Coal use in copper refining, China, 1990, from [Chinese data compendium provided by J. Sinton], p. 2. 1980 Russian figure for electric intensity of copper production (V. Kalashnikov, personal communication, 9/97). Value is substantially higher (3-fold) than estimates for electricity use in copper production in China.
- 18 1980 Russian figure for electric intensity of aluminum production (V. Kalashnikov, personal communication, 9/97). 1981 China figure for electrolytic aluminum, DC use, (from "Physical Intensity of Selected Industrial Products" Spreadsheet printout from J. Sinton, LBL) is very similar.
- 19 Document in authors' files [HT1, p. 10].
- Reference to oil use is assumed to be all use of refined products in nation.
- 20 Chinese language spreadsheet of energy intensities obtained from J.Sinton, dated Feb 12, 1993. 1980 data
- 21 Ratio of textile length to weight as implied by figures in Korea Foreign Trade Association, "Major Economic Indicators for North Korea, 1993". (Page 9).
- 22 1990 (?) figures for China. P. 23: Energy of China, 1993 (Chinese-lang. compendium provided by J. Sinton, LBL)
- 23 Industrial Fuelwood, from document in authors' files [TO1, p. 22]. Upper end of range (100 150 kte/yr).
- 24 From document in authors' files [FC1, p. 7]
- 25 Placeholder value to bring total industrial demand up to 60% of total electricity consumption as estimated in: document in authors' files [EP1].
- 26 Placeholder estimate to bring total industrial/electric generation coal consumption up to 75% of coal available, as estimated in document in authors' files [EE1]
- 27 1980 figures for China, section 8-37 of Chinese language document (1991) provided by J. Sinton, LBL.
- 28 For zinc, uses Russian electric intensity value from 1980 (V. Kalashnikov, personal communication, 9/97). Zinc figure is about 30% higher than 1990's figures for China, page 369 of Chinese language document ("China Energy _____") (1994) provided by J. Sinton, LBL. Lead intensity figure is from the latter document. Includes electricity used in ore milling (c. 1/3 of total for lead).
- 29 Based on flow diagram for Hamhung Fertilizer Complex as presented in document in authors' files [HT1, Annex 8].
 Assumes that all nitrogen fertilizer starts with ammonia production. Coal is assumed to have a calorific value of 6000 kcal/kg (as specified for Anthracite in Annex 7 of the same document). Electricity consumption is also based on the flow diagram, which shows a total of 200 MW of power input to the process that produces 250 kte/yr ammonia. 7200 operating hours per year assumed, as stated in Annex 7 for the vinalon plant in the same complex. Electricity use is assumed (based on the flow diagram) to also account for conversion of ammonia into other fertilizer products, such as urea.
 30 Based on values in Annex 7 of document described in 29. Note that these
- production capacities are the sum of data provided for specific large complexes in DPRK, and thus probably represent most, but not all, of the productive capacity in the country.

- 31 Based on values for carbide and vinalon production from flow diagrams presented in Annex 7 of the document described in 29.
- 32 Chinese 1980 value: "Physical Intensity of Selected Industrial Products" Spreadsheet printout from J. Sinton, LBL
- 33 from document in authors' files [TX1: Annexure 1].
- 34 Electricity use in caustic soda (sodium hydroxide) production refining, China, 1990, from [Chinese data compendium provided by J. Sinton].
- 35 Based on values for superphosphate production from flow diagrams presented in Annex 7 of the document described in 29. Assumes productive capacity of 400 kte/yr at full capacity and actual operation 7200 hours/yr.
- 36 Assumes that superphosphate is produced from phosphorous, and that the energy/electricity intensities of phosphorous production is as noted in "Chinese Energy Conservation" (1993), a Chinese-language compendium provided by J. Sinton of LBL. This assumption probably overstates the energy use in manufacturing superphosphate.
- 37 Data on production of glass and bricks in China contained in spreadsheet provided by J.Sinton of LBL.
- 38 As in "Residential" spreadsheet in this Workbook.
- 39 Russian value for bricks for 1965 obtained from V. Kalashnikov (personal communication, 9/97). Used without inflator. 1980 value from China (Chinese language spreadsheet of energy intensities obtained from J.Sinton, dated Feb 12, 1993) gives an energy intensity slightly more than half of the 1965 Russian value. We do not know whether the Russian and Chinese bricks are the same size, but assume that DPRK bricks will more closely resemble Russian models.
- 40 Economist Intelligence Unit, "China, North Korea Country Profile 1992-93", p.72 (Original Source,
- Industry of the DPRK by M. Trigubenko). Magnesia is MgO, or magnesium oxide.
 41 Rough of intensity from US Bureau of Mines publication as relayed by Ms. Deborah A. Kramer of the U.S. Geological Survey is 10 MMBtu/short ton. This estimate is on the same order of magnitude as the energy required to produce chemically similar calcium oxide from calcium carbonate. A separate estimate of DPRK magnesite fuel use intensity (personal communication [QR 9/97]) was slightly higher: 300 kg fuel oil/te. The latter figure was used.
- 42 Estimated to be similar to electricity requirements for production of cement "clinker" from limestone.
- 43 Estimated imports of nitrogen fertilizer in 1990. Assumed mostly from the (former) Soviet Union.
- 44 1980 Russian figure for thermal energy use (assumed to be as heat) in caustic soda production (V. Kalashnikov, personal communication, 9/97).
- 45 Rough estimate based on 1965 and 1980 Russian figures for coal use in iron making plus steelmaking. (V. Kalashnikov, personal communication, 9/97).
- 46 It has been reported that some fuel oil is used in cement production. The figure shown here is a guess on our part.
- 47 Based on 1965 and 1980 Russian figures for electric energy use in steelmaking
 - (V. Kalashnikov, personal communication, 9/97).

ESTIMATED/PROJECTED ENERGY SUPPLY/DEMAND BALANCES DEMOCRATIC PEOPLE'S REPUBLIC OF KOREA (DPRK) <u>2002 UPDATE</u> ASSUMPTIONS, BACK-UP CALCULATIONS AND DATA: INDUSTRIAL SECTOR ENERGY DEMAND IN 1996, 2000, and 2005

Prepared By David Von Hippel Date Last Modified:

2/24/2003

ASSUMPTIONS FOR CHANGES IN INDUSTRIAL ENERGY USE, 1996, 2000, and 2005

		Pro	luction Relative to 1990		Energy	Intensity Relative to 1990
Subsector	1996	2000		1996	2000 2	THIS SECTION
Iron and Steel (See Note 1)	36%	18%	THIS SECTION OF	110%	115%	THIS SECTION
Cement (See Note 2)	32%	29%		110%	115%	%
fraction of heat from heavy oil	10%	20%	THIS WORKSHEET			OF THIS
Fertilizers (See Note 3)	25%	11%		110%	115%	%
Other Chemicals	30%	18%	NOT USED FOR	110%	115%	WORKSHEET
Pulp and Paper	30%	18%	NOT OULD FOR	110%	115%	WORROTLLI %
Other Metals	30%	18%	THIS ANALYSIS	110%	115%	NOT USED FOR
Other Minerals	30%	29%		110%	115%	NOT USED FOR %
Textiles	30%	18%	þ	110%	115%	THIC ANALVEIC [%]
Building Materials	30%	29%	þ	110%	115%	THIS ANALYSIS
Non-Specified Industrynon-oil fuels	30%	18%	þ	110%	115%	%
Non-Specified Industrydiesel oil	21%	16%		110%	115%	%
Non-Specified Industryheavy oil	30%	53%	20/01 120/01 00/6	110%	115%	
	(See Note 4)				

Subsector	1996 Production Relative to 1990
Iron and Steel (See Note 1)	36%
Cement (See Note 2)	32%
fraction of heat from heavy oil	10%
Fertilizers (See Note 3)	25%
Other Chemicals	30%
Pulp and Paper	30%
Other Metals	30%
Other Minerals	30%
Textiles	30%
Building Materials	30%
Non-Specified Industrynon-oil fuels	30%
Non-Specified Industrydiesel oil	21%
Non-Specified Industryheavy oil	30%

Notes/Sources:

- 1 www.koreascope.com, in "Production of Major Industrial Items and World Ranking" (visited 6/3/02), lists the ROK production of steel in 1999 as 41 million tonnes. In "Economic and Social Comparison between the Two Koreas", on the same WWW site, the ROK's steel production is listed as being 33 times that of the DPRK, implying an annual production of about 1.24 million tonnes. This figure, about 18 percent of 1990 production levels, seems plausible (though possibly high), and was used for the year 2000.
- 2 The source noted above, in the "Economic and Social..." page, lists a DPRK cement production of 4.1 million tonnes, or about 29 percent of year 1990 production, which again seems plausible.
- 3 www.nis.go.kr/english/democratic/industry07.html, dated 2001, by the ROK National Intelligence Service, suggests that current supplies of fertilizer cover only 40 percent of fertilizer needs in the DPRK. Causes and Lessons of the "North Korean Food Crisis", by Tony Boys of Ibaraki Christian University Junior College (2000), lists total fertilizer supply in the DPRK in 1999 of 200 ktonnes of "NPK", of which 32% was produced domestically, 10% imported, and the remainder provided in aid. This would imply that about 11% of 1990 levels of fertilizer production were achieved in 1999. This document is available as "dprke.pdf" on the WWW. The same document shows total fertilizer availability of about 170 ktonnes in 1996. Assuming fertilizer aid at that time was minimal, and assuming fertilizer imports were approximately as in 1999, domestic fertilizer production in 1996 can be estimated at 25% of 1990 levels.
- 4 With the exception of "Other Minerals" and "Building Materials", we assume that the level of activity in other industries relative to 1990 in the year 2000 is approximately the same as in the iron and steel sector. The building materials and other minerals subsectors are assumed to have activities relative to 1990 similar to the cement industry. The other minerals subsector includes magnesite (or, when processed like lime for cement, magnesia), which is a valuable export product. An industry source indicates that an 8000 tonne shipment of magnesia (although it may have been magnesite) arrived in Europe in early 2001. Japan imported \$3.5 million worth of magnesia in the first half of 2000 (Korea Trade-Investment Promotion Agency data from http://www.kotra.or.kr/main/common_bbs, visited 6/3/02, "Trade Tendencies of the Major Countries"), which, if annualized and assuming a sales price of \$US 100 to \$200 per tonne (within the range suggested in Queensland Department of Minerals and Energy Mineral Information Leaflet No 5: MAGNESITE, dated January 1998, suggests exports of 35 to 70 thousand tonnes to Japan alone, which in turn suggests relatively active production of the mineral. On our trip to the DPRK in October of 2000 we saw working brick or tile production facilities, some of the very few active industrial facilities we saw during our time in the DPRK.

ESTIMATED/PROJECTED ENERGY SUPPLY/DEMAND BALANCES DEMOCRATIC PEOPLE'S REPUBLIC OF KOREA (DPRK) <u>2002 UPDATE</u> BACK-UP CALCULATIONS AND DATA: TRANSPORTATION SECTOR ENERGY DEMAND

Prepared By David Von Hippel Date Last Modified:

6/6/2002

DERIVATION OF INFORMATION PASSED TO ENERGY BALANCE SHEET, 1990

GENERAL ASSUMPTION:

DPRK transport assumed to be	20% more energy intensiv		
		<u>Notes/S</u>	Sour
il Use: Road Vehicles			
Freight Transported:	4.20E+07 te		1
Average Distance of transport	70 km	Guess	
Energy Intensity, Diesel Trucks	3.08 MJ/te-km		19
Fract Freight on Diesel Trucks	23.8%	Guess	
Diesel Use, Road Freight	2.15E+06 GJ		
Energy Intensity, Gasoline Trucks	5.77 MJ/te-km		19
Fract Freight on Gasoline Trucks	71.3%	Guess	
Gasoline Use, Road Freight	1.21E+07 GJ		
Total Road Freight Oil Use	1.71E+07 GJ		
Number of Civilian Autos in Use	15,500		11
Average km traveled/yr	4,000	Guess	
Efficiency, Civilian Autos		04033	11
-	1.10E+01 km/liter gasoline		
Conversion factor	0.0325 GJ/liter		
Gasoline Use, Civilian Autos	1.83E+05 GJ		
Economically Active Population	1.38E+07	-	3
Per capita Trips/yr	300	Guess	
Average Trip Distance	15 km	Guess	
Fract. Trips by Motor Transport	25%	Guess	
Fraction of Trips by Road	30%		10
Fraction of km in Diesel Veh.	40%	Guess	
Energy Intensity, Diesel Oil Transport	75 kgce/kpass-km		4
Conversion Factor	0.0293 GJ/kgce		
Total Passenger Road Diesel Use	4.10E+06 GJ		
Fraction of km in Gasoline Veh.	60%	Guess	
Energy Intensity, Gasoline Transport	98.2 kgce/kpass-km		4
Total Passenger Road Gas Use	8.06E+06 GJ		-
Total Oil Use, Pass Vehicles	1.32E+07 GJ		
Total Oil Use, Road Vehicles	3.03E+07 GJ		
omass Use, Road Vehicles	3.03E107 83		
	5%		11
Fract Freight on Biomass-fueled Trucks			14
Efficiency of biomass trucks relative to gasoline	50%		13
Biomass use, road freight	1.70E+06 GJ		
I Use: Rail Transport			
Freight Transported:	1.69E+08 te		1
Fraction of Freight on Diesel Rail	12.5%		10
Average Distance of transport	250 km	Guess	
Energy Intensity, Diesel Rail	10.5 kgce/kte-km		18
Conversion Factor	0.0293 GJ/kgce		
Total Rail Freight Oil Use	1.95E+06 GJ		
I Use: Water Transport	1.932+00 03		
Freight Transported:	1.80E+07 te	-	1
Average Distance of transport	200 km	Guess	
Energy Intensity, Diesel/Heavy Fuel Oil Ships	9.9 kgce/kte-km		5
Conversion Factor	0.0293 GJ/kgce		
Total Ship Oil Use	1.25E+06 GJ		
Fraction of Ship Oil Use as Heavy Fuel Oil	50%	Guess	
Total Diesel Oil Use in Ships	6.27E+05		

Oil Use: Air Transport			
Number of Planes (Total)	24		8
Number of Planes that are Tu-154 jets	3		16
Average Number of Seats/Plane (non-jets)	50		15, 16
Average Airspeed During Operation (non-jets)	500	km/hr	15
Average Number of Seats/Plane (jets)	166		15
Average Airspeed During Operation (jets)	900	km/hr	15
Annual Operating Hrs/plane-yrnon-jets	300		Guess
Annual Operating Hrs/plane-yrjets	750		Guess
Implied total seat-km per year	4.94E+08		
Average Fraction of Seats Occupied	75%		Guess
Implied Air Passenger-km	3.70E+08		
Fuel use per hour (An-24s)	3582	liters/hr	12
Fuel use per hour (Tu-154s)	5073	liters/hr	17
Conversion factor	0.0321	GJ/liter gasoline	
Conversion factor		GJ/liter jet fuel	
Total Domestic Air Aviation Gasoline Use	7.24E+05	GJ	
Total Domestic Air Jet Fuel Use	3.99E+05	GJ	
Total Domestic Oil Products Use	1.12E+06	GJ	
Implied Intensity, all planes	3.03E-03	GJ/passenger-km	1
International Aviat. Fuel Supplied by DPRK		0 GJ	Guess
Total Air Transport Oil Use	1.12E+06	GJ	
Oil Use: Non-Specified Transport	1.80E+06	GJ	
Electricity Use: Rail Transport			
Fraction of Freight on Electr. Rail	87.5%		
Average Distance of transport	300	km	Guess
Energy Intensity, Electric Rail		kWh/kte-km	18
Conversion Factor	0.0036	GJ/kWh	
Total Rail Freight Elect Use	5.48E+06	GJ	
Fract. pass. Transp on Elect Rail	70%		
Energy Intensity, Electric Rail		kgce/kpass-km	7
Conversion Factor		GJ/kgce	
Total Pass. Rail Elect Use	5.06E+06		
Total Electricity Use, Rail Transp.	1.05E+07		
Coal Use: Rail Transport		GJ	
Coal Use: Water Transport	0	GJ	
Electricity Use, Non-specified Transport	1.00E+06	GJ	Placeholder value

Notes:

- 1 Estimated Freight transported. Korea Foreign Trade Association, "Major Economic Indicators for North Korea, 1993". Page 34.
- 2 Chinese 4-ton truck, "CA-10B", c. 1985, from [Chinese data compendium provided by J. Sinton], p.2.
- 3 Korea Foreign Trade Association, "Major Economic Indicators for North Korea", page 9.
- 4 For Pass. Vehicles. From: "Energy and Transport in China" in "<u>Energy Markets and the Future of</u> <u>Energy Demand</u>", LBL, 1988. Chinese data for 1985. Probably high for DPRK.
- 5 Per 1000 net te-km. From: "Energy and Transport in China" in "Energy Markets and the Future of Energy Demand ", LBL, 1988. Chinese data for 1985. Probably a bit low for DPRK. Russian (1970s) energy intensities for ships fueled with heavy oil are very similar to the Chinese value used. Russian intensities for marine diesel-fueled ships are lower (about 7 kgce/kte) than the value used, but Russian intensities for inland waterways shipping are higher, about 13 kgce/kte. Russian intensities from V. Kalashnikov (personal communication, 9/97).
- 6 Electric generation efficiency, China, 1981. From "Physical Intensity of Selected Industrial Products" Spreadsheet printout from J. Sinton, LBL.
- 7 Very rough estimate based on US value for 1989 for commuter rail. From D. Gordon, <u>Steering a New</u> <u>Course: Transportation, Energy, and the Environment</u>, 1991, p.33. NK fuel efficiency is probably lower than US but passenger-km per seat is probably much higher.
- 8 Korea Foreign Trade Association, "Major Economic Indicators for North Korea", page 37.
- 9 Rough estimate: DPRK planes assumed to be twice as energy intensive per seat mile as US commercial commuter airlines in 1989 (US data from reference 7).
- 10 Economist Intelligence Unit, "China, North Korea Country Profile 1992-93"
- 11 Estimate by recent visitors of cars in Pyongyang, including 4000 Volvo sedans (of which 3000 are operable), and assuming five years worth of imports of approximately 2500 vehicles per year (used, from Japan, also from former East Bloc). Fuel economy assumed to average 25 miles/gallon. Other observers estimate less than 10,000 autos total.
- 12 Fuel use and airspeed is as estimated cor An-24 in Aircraft spreadsheet of Military Energy Use workbook.
- 13 Assumes that efficiency of gasification of biomass for use as motor fuel is about 50 percent.
- 14 One observer reports that "most trucks outside Pyongyang are fueled with biomass". Other observers, on the other hand, report few or no biomass trucks in use. We assume 5 percent for 1990.
- 15 Assumes (based on source 16) that planes that are not jets are An-24s. These are reported to carry 48 to 52 passengers (World-wide Web site "Turkish World Russian Aircraft", http://www.rz.uni.franfurt.de/
 ~puersuen/tac.htm).
- 16 Federal Research Division, US Library of Congress (1993), <u>North Korea, A Country Study</u>, edited by Andrea M. Savada.
- 17 Assumes Tu-154s, with a range of 5500 km (source 15) have a fuel capacity similar to that of the Boeing 727 (31,000 liters--data from World-wide Web site http://boeing.com/bck_html/Boe727.html), an aircraft similar in size (the 727 is a few percent lighter) and configuration to the Tu-154.
- 18 Based on energy intensity of Russian rail freight in the 1970s (V. Kalashnikov, personal communication, 9/97).
- 19 Based on energy intensity of Russian road freight in the 1970s (V. Kalashnikov, personal communication, 9/97). Note that these values are substantially higher (in the case of gasoline trucks, by a factor of 2) than published Chinese values (for example, see note 2).

Sources/Notes:

DEMOCRATIC PEOPLE'S REPUBLIC OF KOREA (DPRK) <u>2002 UPDATE</u> ASSUMPTIONS, BACK-UP CALCULATIONS AND DATA: TRANSPORT SECTOR ENERGY DEMAND IN 1996 AND 2000

Prepared By David Von Hippel Date Last Modified:

2/24/2003

ASSUMPTIONS FOR CHANGES IN TRANSPORT ENERGY USE, 1996, 2000, AND 2005

(See Note 5 for Assumptions for 2000)

 Population Growth Rate through 2000:
 -0.14% /yr (See Note 20 in "Residential" worksheet)

 Econ. Active. Population Growth Rate 2000-on:
 0.60% /yr
 (See Note 22 in "Residential" worksheet)

 Economically Active population relative to 1990:
 1996
 2000
 2005
 2010

 Economically Active population relative to 1990:
 99%
 99%
 102%
 Calculated

	1996	2000	THIS SECTION OF THIS
Total Road Freight rel. to 1990	30%	18%	
Fraction Road Freight, biomass truck	8%	8.0%	6 Assumption
Fraction Road Freight, diesel truck	10.1%	30.4%	ANALYSIS Assumption
Fraction Road Freight, gasoline truck	82%	61.6%	6 Calculated

	Activity Relative to 1990				Ene			
SubsectorEnd Use	1996	2000	THIS SECTION	: .	1996	2000	THIS SECTION	
RoadFreightGasoline	34%	16%		6	105%	105.0%	1 1/0	2
RoadFreightDiesel	13%	23%	OF THIS	6	105%	100.0%	OF THIS	2
RoadFreightBiomass	48%	29%	WORKSHEET	6	100%	100%	WORKSHEET 1/2	
RoadCivilian Auto Pass-km	100%	95%	NOT USED FOR	6	105%	100.0%	NOT USED FOR 16	Assumption
RoadPassenger Bus, Diesel	45%	37%	THIS ANALYSIS	6	105%	100.0%	THIS ANALYSIS	3
RoadPassenger Bus, Gasoline	54%	13%		6	105%	100.0%		3
RailFreight, Diesel	40%	30%		6	100%	100%	%	2
RailFreight, Electric	40%	30%		6	105%	100%	%	2
RailPassenger, Electric	45%	30%		6	105%	100%	~	3
WaterFreight, Diesel and HFO	45%	35%		6	100%	100%	6	2
AirPassenger: Activity levels	80%	75%		6	100%	100%	~	Assumption
AirPassenger: Fraction as Jet Fuel	36%	36%		6				4
Non-Specified Transport (Oil/Elect.)	0%	0%	L007007	6	100%	100%	//	

Sources/Notes:

- 1 US Central Intelligence Agency, "Korea, North". <u>CIA Factbook, 1995</u> (World Wide Web Version). USCIA, Washington, D.C., USA. 1996.
- 2 Consistent with general decrease in industrial production
- 3 Assumes that per-capita passenger transport use decreased to 45 to 54 percent of 1990 due to austerity
- measures, increasing to 100 to 135 percent of 1990 by 2005 in the recovery scenario, and decreasing to 40 to 45 percent in the Decline scenario.
- 4 Assumes that any substantial recovery would require a substantial increase in air transport, which would be use new (to the DPRK) jet aircraft to augment the existing fleet of (mostly) aging propeller-driven planes. These planes would be needed to move visitors and investors from place to place within the country.
- 5 No specific data were available for the transport sector for 2000, so estimates of the parameters in these tables are rough figures based on the experiences of Nautilus staff and others in the DPRK. It is assumed that the use of producer-gas-fueled trucks would increase somewhat as a fraction of overall freight transport, but that the increase would be modest. Visitors to the DPRK have generally noted a modest increase in the use of small "private" cars and mini-vans in the last several years. The use of other vehicles, however, seems to have stayed the same or decreased slightly, thus the slight decrease in vehicle use between 1996 and 2000 relative to 1990. No change in the efficiency of vehicles was assumed between 1996 and 2000, as any efficiency gains through the introduction of a few new vehicles seems likely to be counterbalanced by continuing problems with the availability of spare parts. We saw many disabled trucks along the road in areas not far from Pyongyang.

ESTIMATED/PROJECTED ENERGY SUPPLY/DEMAND BALANCES DEMOCRATIC PEOPLE'S REPUBLIC OF KOREA (DPRK) <u>2002 UPDATE</u> BACK-UP CALCULATIONS AND DATA: RESIDENTIAL SECTOR ENERGY DEMAND

Prepared By David Von Hippel Date Last Modified: 6/8/2002

DERIVATION OF INFORMATION PASSED TO ENERGY BALANCE SHEET, 1990

DERIVATION OF INFORMATION PASSED TO		<u> </u>	Sources/Notes:
Estimate of Rural and Urban Households			
Total DPRK Population	2.20E+07		1
Military Personnel	1.20E+06		
Population in Households	2.08E+07		
Urban HH pop. fract	60%		
Rural HH pop. fract	40%		-
Persons/HH, Urban	4.65		4
Persons/HH, Rural	4.65		
Number of Urban HH	2,683,871		
Number of Rural HH	1,789,247		
Coal Use: Urban Households	1,709,247		
Fraction Using Coal:	100%		5
Average HH Dwelling Size		ca motoro	
		sq. meters	19
Te coal per HH/yr	1.83125		19
GJ/Te Coal	24		
GJ Coal Use/HH	43.95		
Total Coal Use, Urban HH		1.18E+08 GJ/yr	
Coal Use: Rural Households			
Fraction Using Coal:	26%		6
Te coal per HH/yr	9		2
GJ/Te Coal	24		7
GJ Coal Use/HH	216		
Total Coal Use, Rural HH		1.00E+08 GJ/yr	
Electricity Use: Urban Households			
Fraction Electrified HH:	100%		8
MWh per HH/yr	0.768		g
GJ/MWh	3.6		10
GJ Electricity Use/HH	2.7648		
Total Electricity Use, Urban HH		7.42E+06 GJ/yr	
Electricity Use: Rural Households			
Fraction Electrified HH:	100%		8
MWh per HH/yr	0.512		9, 24
GJ/MWh	3.6		3, 24
GJ Electricity Use/HH	1.8432		10
Total Electricity Use, Rural HH	1.0452	3 30E+06 C 1/4r	
Oil Use: Urban Households		3.30E+06 GJ/yr	
Fraction using LPG/Kero:	250/	(for Cooking)	
		(for Cooking)	11
te per HH/yr	0.22		12
GJ/te	44.4		13
GJ LPG/Kero Use/HH	9.6		
Total LPG/Kero Use, Urban HH		6.44E+06 GJ/yr	
Oil Use: Rural Households			
Fraction using LPG:		(for Cooking)	
te per HH/yr	0.22		
GJ/te	44.4		
GJ LPG Use/HH	9.6		
Total LPG Use, Rural HH		8.59E+05 GJ/yr	
Charcoal Use: Urban Households			
Fraction Using Charcoal:	10%	(for Cooking)	16
Te Charcoal per HH/yr	0.44		17
GJ/Te Charcoal	28.8		18
GJ Charcoal Use/HH	12.8		
Total Charcoal Use, Rural HH	.2.0	3.44E+06 GJ/yr	
Wood/Biomass Use: Rural Households		C IL FOO COryl	
Fraction Using Wood:	60%	(all End Uses)	
Te Wood/Biomass per HH/yr	13.7		6
			14
GJ/Te Wood/Biomass	15.25		15
GJ Wood/Biomass Use/HH	209.4		
Total Wood/Biomass Use, Rural HH		2.59E+08 GJ/yr	

Growth in t	otal number o	f households	-0.14%	/yr (1990 to 2	000 Estimate)		20
_				/yr 2000-on	,		22
	Fraction of Ho	useholds as:	1996	2000			-
U	Urban		60%	60%	I HIS SE	ECTION	6 21
-	Rural		40%	40%			6 2 ⁻
-	Number of Ho	useholds	0.000 504	0.045.404		THIS	
	Urban		2,660,581	2,645,161		ПЭ	
Ľ	Rural		1,773,721	1,763,441			
			1996	2000	WORK	SHFFT	-
	urban	elative to 1990:	60%	2000 50%			•
	Rural		60%	50%			0
	Turai		0078	5078		USED	0
Electricity U	se per Househ	old relative to 1990:	1996	2000			
	Urban	(See Note 23)	60%	34%	FOR	THIS	6
F	Rural	(See Note 24)	45%	10%			6
					ANAL	VCIC	
		ousehold rel. to 1990:	1996	2000	ANAL	-1313	·
F	Rural		110%	110%			6
Charcoal Us	se per Househo	old rel. to 1990:	1996	2000		·	
	Urban		75%	75%			6
Kero/I PG U	lse per Househ	old rel. to 1990:	1996	2000		·	
	Urban		30.0%	30%			6
	Rural	(See Note 25)	25.0%	80%			/

Sources/Notes:

- 1 from document in authors' files [HT1].
- 2 From document in authors' files [FC1]. Average figure based on figure for use in a central area of DPRK.
- 3 Value for Ongjin area (southern DPRK) from document in authors' files [FC1]. Value is similar to estimates given for rural areas in the central and northern regions of DPRK.
- 4 Assumed same as rural value.
- 5 Assumes all urban households, most in multi-unit concrete buildings, use coal for space heating. Urban households also, except in Pyongyang, use coal for cooking. From document in authors' files [R1].
- 6 Rough est. based on fractions cited for three different areas of DPRK, which vary from 8 to 50% coal use.
- 7 From document in authors' files [FC1]. This value may be somewhat high.
- 8 Document in authors' files [HT1, p. 14], says "government reports
- that 100 percent of homes and industry are electrified".
- 9 Estimated based on 1.6X (rural) and 2.4X (urban) 1975 value for per household consumption of electricity in the Republic of Korea, as derived from pp. 121, 90, and 102 of "The Electric Future of Korea" East-West Center, September, 1983. At these levels, total sectoral energy use is approximately 10% of total national electricity consumption, as suggested in UNDP "Project of the Government of DPRK: Electric Power Management System".
- 10 Unit conversion (3600 kJ/kWh), no generation losses included.
- 11 From document in authors' files [FA1]. This source
- notes that cooking in (apparently Pyongyang) is by LPG or Kerosene stoves. Figure shown assumes that that petroleum-based fuels are rarely used outside Pyongyang, and that the 1990 population of Pyongyang is approximately 3.2 million (Microsoft Encarta lists a 1984 estimate of 2.64 million, Korea Foreign Trade Association lists 3.288 million for 1990)).
- 12 Estimated assuming petroleum product stoves have on average 50 percent of the energy intensity of wood stoves, and that wood use for cooking is approximately 19.2 GJ/HH-yr (estimate from Kumgang area, as given in from document in authors' files [FC1].

13 Rough ave. assuming fuel is 50% LPG (at approx. 45.5 GJ/te) and 50% Kerosene (at approx. 43.3 GJ/te)

14 Based on est. from Kumgang area, as given in document in authors' files [FC1].

15 Based on average of values for wood (16 MJ/dry kg) and crop residues (14.5 MJ/kg), source as in 14) 16 Placeholder estimate.

- 17 Assumes heat energy requirements as for wood-fired rural cooking, but assumes fuel input per unit heat supplied to the cooking vessel is two-thirds that for wood stoves.
- 18 Based on value used in LEAP (SEI-B) default data set (which is based on international sources)

19 Based on Chinese figure of 30 kgce/sq.m.-yr for centrally-heated residential buildings, and a rough average dwelling size of 50 sq. meters (from in-country observations by visitors to DPRK). An alternative "typical" dwelling size estimate of 120 sq. meters (from document in authors' files [FA1]. would seem to be large based on Chinese figures, which show less than 10 square meters/person ("Energy Use and Conservation in China's Residential and Commercial Sectors: Patterns, Problems, and Prospects", by Feng Liu, LBL, March. 1993.)

- 20 US Central Intelligence Agency, "Korea, North". <u>CIA Factbook, 2001</u> (World Wide Web Version). USCIA, Washington, D.C., USA. 2001, http://www.odci.gov/cia/publications/factbook/geos/kn.html lists a 2001 estimated growth rate of 1.22 %/yr and a total population of just under 22 million. The USDOE Energy Information Administration lists a year 2000 population of 21.7 million in its <u>North Korea Country Analysis Brief</u> (www.eia.doe.gov/emeu/cabs/nkorea.html, visited 5/2002). A file of "DPRK Energy Data" provided to Nautilus by the Korea Energy Economics Institute (KEEI, 2002) suggests a year-2000 population of 22.175 million and a growth rate of 0.4 percent annually (with the growth rate decreasing substantially between 1990 and 2000), but uses a year-2000 base population of 20.221 million for the DPRK. While recognizing the extreme difficulty in estimating DPRK population, we continue to assume that year 1990 population was 22 million (as official estimates suggest) and adopt the figure provided by USDOE EIA as the year 2000 population. This suggests a modest decrease in population over the decade which is certainly consistent with food shortages and anecdotal but fairly widespread evidence of lack of proper food rations, as well as medical care, for the DPRK populace.
- 21 Assumption. There have been reports of forced migration from the cities to the rural areas, but none have been confirmed. World Bank projections suggest continued rural-to-urban migration. The overall pattern of migration remains unclear. There is anecdotal evidence that residents of cities in the North of the DPRK, for example, are leaving for the countryside where they can forage, rather than remain in cities where food distribution is sporadic at best.
- 22 This lower population growth assumption represents an attempt on our part to take into account the effects of the food shortages of the 1990's on future population growth in the DPRK, but assumes that there would be at least a modest improvement in the food situation. Historical (pre-1990) population growth rates had been near 2 percent annually.
- 23 Visitors to the DPRK in 2000 describe electricity in Pyongyang as being generally available, but electricity in at least major portions of other cities being largely unavailable. Based on Korea Trade-Investment Promotion Agency (KOTRA) data (from http://www.kotra.or.kr/main/info/nk/eng/main.php3, visited 6/3/02) that lists the population of Pyongyang as 3.4 million, assuming, based roughly on a record of

of electrical outlet voltage collected in Pyongyang and covering most of 2000, that Pyongyang suffered from blackouts for about 20% of 2000, and further assuming that residents of cities other than Pyongyang suffered from the pyongyang suffered from blackouts for about 20% of 2000, and further assuming that residents of cities other than Pyongyang suffered from blackouts for about 20% of 2000, and further assuming that residents of cities other than Pyongyang suffered from blackouts for about 20% of 2000, and further assuming that residents of cities other than Pyongyang suffered from blackouts for about 20% of 2000, and further assuming that residents of cities other than Pyongyang suffered from blackouts for about 20% of 2000, and further assuming that residents of cities other than Pyongyang suffered from blackouts for about 20% of 2000, and further assuming that residents of cities other than Pyongyang suffered from blackouts for about 20% of 2000, and further assuming that residents of cities other than Pyongyang suffered from blackouts for about 20% of 2000, and further assuming that residents of cities other than Pyongyang suffered from blackouts for about 20% of 2000, and further assuming that residents of cities other than Pyongyang suffered from blackouts for about 20% of 2000, and further assuming that residents of cities other than Pyongyang suffered from blackouts for about 20% of 2000, and further assuming that residents of cities other than Pyongyang suffered from blackouts for about 20% of 2000, and further assuming that residents of cities other than Pyongyang suffered from blackouts for about 20% of 2000, and further assuming that residents of cities other than Pyongyang suffered from blackouts for about 20% of 2000, and further assuming that residents of 20% of 2000, and 20%

had power only household was about 20% of 2000, and further assuming that residents of cities other than Pyongyang 16% of the time, we estimate that the average consumption of power per 34% of that in 1990.

24 Nautilus Institute's rural energy survey in the village of Unhari, (as reported on in "A RURAL ENERGY SURVEY IN UNHARI VILLAGE, THE DEMOCRATIC PEOPLE'S REPUBLIC OF KOREA (DPRK): METHODS, RESULTS, AND IMPLICATIONS", <u>Asian Perspectives special issue, 2002.</u>), suggested an annual average usage of 390 kWh per household per year, fairly close to the 1990 value estimated above. During our mission to Unhari in 2000, we determined that householders virtually never had electric power available in their homes during the day, especially in the winter months. As Unhari is relatively close to Pyongyang, it is our expectation that the situation there is likely, if anything, to be better than that in other rural areas. We therefore assume that the lack of availability of power limited rural residents to 10% of 1990 levels of electricity consumption in the year 2000.

25 Oil use in rural households increased for 2000 relative to 1996 to reflect more use of kerosene and diesel oil for lighting during the bulk of the year, when electricity for lighting is unavailable. On a national basis, the per-household rural oil consumption estimate shown here is approximately the same as that estimated for Unhari village (see reference in Note 24) based on a survey done in 1998. Other areas probably had less access to fuel supplies than Unhari, on average, but rural electricity availability in 2000 was worse than in 1998.

ESTIMATED/PROJECTED ENERGY SUPPLY/DEMAND BALANCES DEMOCRATIC PEOPLE'S REPUBLIC OF KOREA (DPRK) <u>2002 UPDATE</u> BACK-UP CALCULATIONS AND DATA: AGRICULTURAL SECTOR ENERGY DEMAND

Prepared By David Von Hippel Date Last Modified:

DERIVATION OF INFORMATION PASSED TO ENERGY BALANCE SHEET, 1990

2/24/2003

DERIVATION OF INFORMATION PASSED TO ENER	ST BALANCE SHELT, 1390	Sources/Notes:
Oil Use in Agricultural Sector		
Total Area of Field Crops:	1.70E+06 ha	1
Average Diesel use	41 l/ha	2
Conversion Factor	1149 l/te	
Conversion Factor	43.17888 GJ/te	
Oil Use: Agric. Machinery	2.62E+06 GJ	
Electricity Use in Agricultural Fields		
Total Area of All Crops:	2.00E+06 ha	3,4
Average electricity use	126 kWh/ha	2
Conversion Factor	0.0036 GJ/kWh	
Electricity Use: Agric./Fields	9.07E+05 GJ	
Coal Use: Processing/Other		
Area of Rice Cultivation	6.50E+05	4
Total Agr. Coal Use	1.50E+01 GJ/ha rice	7
Processing/Other Coal Use	9.75E+06 GJ	
Oil Use: Processing/Other		
Total Agr. Oil Use	7.70E+00 GJ/ha rice	7
Oil Use in Agric. Machinery	2.62E+06	
Net Oil Use, Processing/Other	2.39E+06 GJ	
Electricity Use: Processing/Other	· · · ·	
Total Agr. Electricity Use	4.44E+02 kgce/ha rice	7
Conversion Factor	4.04E+02 kgce/MWhe	
Conversion Factor	3.60E+00 GJ/MWHe	
Electricity Use: Agric./Fields	9.07E+05 GJ	
Net Elect Use, Processing/Other	1.66E+06 GJ	9
Wood/Biomass Use: Processing/Other	· · ·	
Grain straws used in Crop drying	3.00E+06 te	5
Conversion Factor	14.5 GJ/te	6
Grain brans used in crop drying	1.00E+05 te	5
Conversion Factor	14.5 GJ/te	6
Wood used in Agricultural Sector	0	No data
Conversion Factor	16 GJ/te	6
Total Wood/Biomass Use:	4.50E+07 GJ	

		(Note 10)	
	1996	2000	
Area Cropped Relative to 1990:	100%	100%	THIS SECTION OF THIS
Jse of Tractors, etc. Relative to 1990:	30%	40%	WORKSHEET NOT USED
Jse of Electricity in Fields Relative to 1990:	90%	97%	Assumption
Coal Use, Processing/Other, Rel. to 1990:	90%	90%	FOR THIS ANALYSIS
Dil Use, Processing/Other, Rel. to 1990:	30%	30%	
Elect. Use, Processing/Other, Rel. to 1990:	90%	97%	
Biomass Use, Processing/Other, Rel. to 1990:	90%	90%	

Sources/Notes:

- 1 Total reported cropped area less fruit orchards (300,000 ha), which are assumed to be relatively less energy intensive to operate. From document in authors' files [KJ1, p. 7].
- 2 P.81: F Liu et al, "An Overview of Energy Supply and Demand in China", LBL, May 1992.
- 3 Assumption is that most electricity use will be for irrigation.
- 4 Crop area. From document in authors' files [KJ1, p. 7].
- 5 From document in authors' files [HT1, p. 10].
- 6 From document in authors' files [FC1, p. 7]. Air dried wood.
- 7 Based on 1987 Chinese values. Agricultural coal use from J. Sinton, Ed, "China Energy Databook 1992" (Revised June 1993), LBL, page IV-56. Rice area in China from FAO.
- 8 Intensity of fuels use relative to 1990 values (for example, use of field machinery per hectare).
- 9 On a per hectare of rice basis, the sum of the "field" and "other" electricity consumption estimates shown here are very similar to the approximately 3.6 GJ per ha of rice estimated during Nautilus' 1998 and 2000 rural energy survey in Unhari village, the DPRK, as (as reported in "A RURAL ENERGY SURVEY IN UNHARI VILLAGE, THE DEMOCRATIC PEOPLE'S REPUBLIC OF KOREA (DPRK): METHODS, RESULTS, AND IMPLICATIONS", Asian Perspectives special issue, 2002.).
- 10 Estimates of fuel use in 2000 relative to 1990 are subjective, and are based on observations by Nautilus and others who have visited farms in the DPRK. Typically, supplies of electricity and coal seem to be provided to farms at a priority to other sectors during the growing and harvest seasons, so supplies of those fuels are barely sufficient to accomplish the necessary threshing and milling, but motor fuel supplies are considerably less than in 1990, so that tractors are used only for essential purposes, and much more labor is done by hand. This is probably even more the case in more remote areas of the country. The lack of spare parts for tractors and trucks also diminishes demand for motor fuels. Electricity use for agriculture is assumed to be slightly higher in 2000 than in 1996 because, though availability of electricity for agricultural requirements are similar, intensity per unit of output is assumed to be higher due to a lack of access to spare parts and a lack of other fuels for support vehicles (thus decreasing overall efficiency).

ESTIMATED/PROJECTED ENERGY SUPPLY/DEMAND BALANCES DEMOCRATIC PEOPLE'S REPUBLIC OF KOREA (DPRK) **2002 UPDATE BACK-UP CALCULATIONS AND DATA:** FISHERIES SECTOR ENERGY DEMAND Prepared By David Von Hippel Date Last Modified: 6/6/2002 **DERIVATION OF INFORMATION PASSED TO ENERGY BALANCE SHEET, 1990** Sources/Notes: Oil Use: Large Ships Total Tonnage of Larger Ships 7.00E+05 Fraction in service 75% Guess Average days at sea 200 Guess Operating hours/day 12 Guess Average speed at sea 10 km/hr Guess Total ship travel 1.26E+10 gross te-km **Conversion Factor** 1.6 km/mile 7.57 kgce/kte-mile Oil Use efficiency 2 0.0293 GJ/kgce Conversion Factor Total Oil Use, Larger Ships 1.75E+06 GJ Fraction of Oil Use as Diesel 50% Guess Fraction of Oil Use as Heavy Fuel Oil 50% 8.73E+05 GJ Diesel Oil Use in Large Ships Heavy Fuel Oil Use in Large Ships 8.73E+05 GJ Oil Use: Fishing Collectives 1.00E+05 GJ Placeholder estimate Oil Use: Processing/Other 1.00E+05 GJ no data Total Oil Use, Fisheries Sector 1.95E+06 GJ Coal Use: Ships 0.00E+00 GJ no data 0.00E+00 GJ Coal Use: Processing/Other no data 0.00E+00 GJ Total Coal Use, Fisheries Sector no data Electricity Use: Processing/Other 1.00E+05 GJ Placeholder estimate 1.00E+05 GJ Total Electricity Use, Fisheries Sector ESTIMATE OF CURRENT AND FUTURE ENERGY USE IN FISHERIES SECTOR (See Note 3) 1996 2000 THIS SECTION OF THIS Large Ships Fishing Effort Relative to 1990: 50% 42% Assumption WORKSHEET NOT USED FOR Fishing Collectives Fishing Effort Relative to 1990: 50% Assumption 42% Oil Use, Processing/Other Relative to 1990: 50% 42% Assumption THIS ANALYSIS Elect. Use, Processing/Other Relative to 1990: 50% 42% Assumption Sources/Notes: 1 From document in authors' files [IF1]. 2 Chinese data, c. 1990. From p. 23: "Energy of China, 1993" [provided by J. Sinton of LBL--Chinese language]. 3 The Korea Trade-Investment Promotion Agency (KOTRA) suggests that DPRK marine products catch decreased substantially between 1996 and 1997, but has increased somewhat since then. KOTRA data (from "Agriculture, Forestry, and Marine Products industries", available through http://www.kotra.or.kr/main/, visited 6/3/02) lists 1996 output of .876 million tonnes, and 1999 output of .664 million tonnes. A web page on "North Korea's Foreian Trade in 2000" from the same site listes the value of marine exports as having increased 9.4 % between 1999 and 2000. If all fisheries production tracked export earnings (which is not necessarily the case, but assumed for the sake of argument here), the implied ratio of fisheries output between 1996 and 2000 is 83% . We further assume that fisheries effort (as reflected in fuel use) is proportional to fisheries output. Alternatively, end of 1999 data based on the Economic and Social Comparison between the Two Koreas, published by the National Statistics Administration (December 2000) and provided on http://www.koreascope.org/english/sub/1/index3-h.htm, suggest that the DPRK fish catch in 1999 was 45.70% of the catch in 1990. This figure is very close to the 42 percent figure shown above.

ESTIMATED/PROJ	ECTED	ENERG	Y SUPPLY/DEMAND BALAN	ICES
	-	_	PUBLIC OF KOREA (DPRK)	
	0.	2002 UF		
			TIONS AND DATA:	
ВА				
	PUBLIC	COMME	RCIAL SECTOR	
Prepared By David Von Hippel	T			
Date Last Modified: 2/24/2003				
	4			
DERIVATION OF INFORMATION PASSED T	<u>O ENERGY</u>	BALANCE S		
Coal Use: Public/Commercial Sectors			<u> </u>	ources/Notes:
Urban Residential Floor Space:		1.34E+08	sa.m.	
Ratio of Res. Urban to Pub/Comm	I Space	29.60%	- 1	1
Commercial Floor Space		3.97E+07	sq.m.	4
Coal Use intensity			kgce/sq.m.	2
Conversion Factor		0.0293	GJ/kgce	
Total Coal Use, Public/Commercia	I Sectors	3.49E+07		No Data
Oil Use: Public/Commercial Sectors		0.00E+00	GJ/yr	No Data
Electricity Use: Public/Commercial Sectors		07 E	kWh/sq.m.	3
Electricity Use intensity, Buildings Conversion Factor			GJ/kWh	3
Electricity Use in Buildings		3.93E+06		
Other Electricity Use, Public/Comm	nercial	7.00E+06		5
Total Elect. Use, Public/Commerci		1.09E+07		Ű
Wood/Biomass Use: Public/Commercial Sector		0.00E+00		No data
			·	
ESTIMATE OF CURRENT AND FUTURE EN	ERGY USE	IN PUBLIC/C	OMMERCIAL SECTORS	
		(See Note 8)		_
	1996	2000	THIS SECTION OF THIS	<u>-</u>
Public/Commercial Floor space per unit residential floor space relative to 1990:	100%	95%	WORKSHEET NOT USED FOR	7
Public/Commercial Floor space (sq.m.)	3.94E+07			7
Coal use per square meter relative to 1990:	90%	65%	THIS ANALYSIS	Assumption
Elect. use per square meter relative to 1990:	60%	34%		,
Other Public/Comm'l elect use rel to 1990.	60%	34%		
	•			
Sources/Notes:				
1 Ratio of all commercial to <u>urban</u> resid. floor				
<u>Conservation in China's Residential and Co</u> by Feng Liu, LBL, March, 1993, p.26.)	mmercial Se	ectors: Pattern	is, Problems, and Prospects ,	
2 For centrally heated buildings. Source as in	1 nage 41			
3 Derived based on data in 1, pages 26 and 6				
4 Note that this is about twice current Chinese		less than half	of 1985 USSR levels.	
5 Placeholder estimate to bring total Agric/Se	rvices/Militar	ry power dema	and up to 25% of electricity use	
as estimated in document in authors' files [l	EP1].			
6 [Not Used]				
7 Lower value in 2000 assumes the closure of				
8 Based on visits to the DPRK in 1998 and 20		• •		
at an unusual rate (when there is constructi as in 1990. The reduction in electricity use	,		sidential to commercial/public space remains	
-			amely that power outages in cities outside the	
Pyongyang area as of 2000 were by far the				
per unit area assumed for 2000, 65%, reflec				
				1

2002 UPDA BACK-UP CALCULATION	S AND DATA:		
ENERGY USED IN MILITARY BUILDING	SS AND OTHER F	ACILIT	IES
repared By David Von Hippel ate Last Modified: 2/24/2003			
ERIVATION OF INFORMATION PASSED TO ENERGY BALANC	E SHEET, 1990	Se	ources/Notes:
oal Use: Military Sector			
Military Installation Floor Space: Coal Use intensity Conversion Factor	2.00E+07 sq.m. 30 kgce/s 0.0293 GJ/kg		1 2
Total Coal Use, Military Buildings Coal Use, Military Manufacturing Other Coal Use: Military Sector	1.76E+07 GJ 8.87E+05 GJ 2.00E+07 GJ		5 1
Total Coal Use, Buildings and Other	3.85E+07 GJ		
il Use: Military Sector Oil Use, Military Transport Vehicles Oil Use, Heavy Armaments	6.58E+06 GJ 2.63E+06 GJ		5 5
Oil Use in Air Force Oil Use in Navy	2.65E+06 GJ 6.85E+06 GJ		5 5 5
Oil Use, Buildings and Other Total Oil Use, Military Sector ectricity Use: Military Buildings and Other	1.00E+05 GJ 1.88E+07 GJ		1
Electricity Use intensity, Buildings Conversion Factor	55 kWh/s 0.0036 GJ/kW	•	4
Other Electricity Use Total Electricity Use, Buildings and Other: Electricity Use, Military Manufacturing	5.00E+06 8.96E+06 GJ 4.75E+04 GJ		1 5
Total Electricity Use, Military:	9.01E+06 GJ		
ergy Use in 1996 and 2000 Relative to 1990 for Subsectors/En 1996 Coal Use, Buildings and Other, relative to 1990	nd-Uses Not Covered in M	Military W 100%	orkbook Assumption
2000 Coal Use, Buildings and Other, relative to 1990 1996 Oil Use, Buildings and Other, relative to 1990 2000 Oil Use, Buildings and Other, relative to 1990		100% 100% 100%	Assumption Assumption Assumption
1996 Elect. Use, Buildings and Other, relative to 1990 2000 Elect. Use, Buildings and Other, relative to 1990		50% 50%	Assumption Assumption Assumption
ources/Notes: Placeholder Estimate For centrally heated Commercial/Public buildings. From "Energy <u>Conservation in China's Residential and Commercial Sectors: Pa</u> by Feng Liu, LBL, March, 1993, p.41.) Derived based on data in 1, pages 26 and 63. Assumed to be twice the level in public and commercial buildings. As estimated in other Military Energy Consumption sections. Rough assumption, but as the electricity situation in the country has that electricity use in military buildings in the DPRK is larger than in	<u>tterns, Problems, and Pros</u> as continued to worsen, it.s		ikely

ESTIMATED/PROJECTED ENERGY SUPPLY/DEMAND BALANCES DEMOCRATIC PEOPLE'S REPUBLIC OF KOREA (DPRK) <u>2002 UPDATE</u> BACK-UP CALCULATIONS AND DATA: OTHER/NON-SPECIFIED SECTOR

Prepared By David Von Hippel Date Last Modified: 6/6/2002

DERIVATION OF INFORMATION PASSED TO ENERGY BALANCE SHEET, 1990

				Sources/Notes:
Coal Use: Other/Non-Specified Sectors				
Diesel Oil Use: Other/Non-Specified Sector	ors	2.00E+06	GJ	1
Kerosene/Jet Fuel Use: Other/Non-Specil		3.70E+06	GJ	1
Electricity Use: Other/Non-Specified Sector Wood/Biomass Use: Other/Non-Specified				
ESTIMATE OF CURRENT AND FUTURE	ENERGY	USE IN NO	N-SPECIFIED SECTORS	
	T T			
Values Relative to 1990	1996	2000	THIS SECTION OF THIS WORKSHEET NOT USED F	FOR .
Oil used in unspecified/other sectors	0%	0%	THIS ANALYSIS	Assumption

Sources/Notes:

1 Included to account for remainder of refined products production in balance sheet, 1990.

ESTIMATED/PROJECTED ENERGY SUPPLY/DEMAND BALANCES DEMOCRATIC PEOPLE'S REPUBLIC OF KOREA (DPRK) <u>2002 UPDATE</u> BACK-UP CALCULATIONS AND DATA: NON-ENERGY RESOURCE USES

Prepared By David Von Hippel Date Last Modified: 6/6/2002

DERIVATION OF INFORMATION PASSED TO ENERGY BALANCE SHEET, 1990

		Sources/Notes:
Coal Use as feedstock: Fertilizer (Ammonia) production	1.83E+07 GJ/yr	1
Total Coal Use: Non-Energy Applications:	1.83E+07 GJ/yr	
Oil Use: Non-Energy Products	9.42E+06 GJ/yr	4
Wood/Biomass Use: Roundwood for Wood Products:	5.87E+07 GJ/yr	2
Wood/Biomass Use: Non-Energy Applications	5.87E+07 GJ/yr	

ESTIMATE OF CURRENT AND FUTURE NON-ENERGY USE OF FUELS							
Values Relative to 1990	1996	2000	THIS SECTION OF THIS	÷C.			
Coal used as feedstock for ammonia production	25%	11%	WORKSHEET NOT USED FOR	%	:		
Oil Use: Non-Energy Products	30%	30%		%	Assumption		
Wood/biomass used as roundwood:	60%	50%	THIS ANALYSIS	~%	Assumption		

Sources/Notes:

1 Imported from Industry sheet.

2 Imported from Biomass sheet.

3 Assumed same as production relative to 1990 for the fertilizer subsector; imported from "Industry--96-on" sheet.

4 Estimate based on estimated output of bitumen, petroleum coke, lubricants, and waxes in 1990.

Some of these products were probably exported (to Russia and possibly China).

ATTACHMENT 2

WORKPAPERS AND DETAILED RESULTS:

ESTIMATES AND PROJECTIONS OF ANNUAL FUEL USE BY THE MILITARY SECTOR IN DPRK UPDATE FOR THE YEAR 2000

ESTIMATES AND PROJECTIONS OF ANNUAL FUEL USE BY THE MILITARY SECTOR IN THE DPRK UPDATE 2002 SUMMARY: FUEL USE IN EQUIPMENT AND MILITARY MANUFACTURING, 1990, 1996, AND 2000

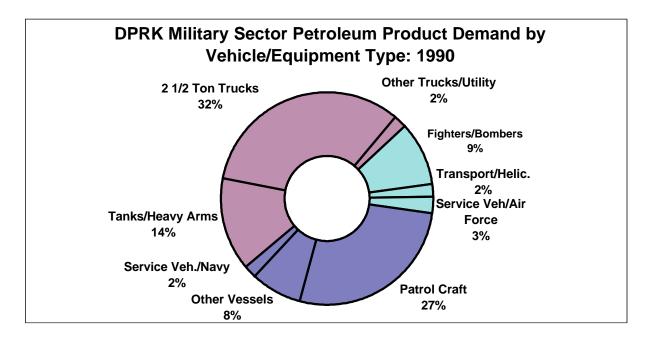
	, ,		1990		1996	2000
MILITARY BRANCH	Est. Number	Fuel Cons	Fraction	Fraction	Fuel Cons	Fuel Cons
Equipment	in Service	GJ	of Branch	of Total	GJ	GJ
GROUND FORCES						
Tanks	5,832	2.05E+06	22.2%	10.4%	1.78E+06	1.83E+06
Amphibious Vehicles	900	1.04E+05	1.1%	0.5%	9.08E+04	9.33E+04
Armored Fighting Vehicles	4,015	4.50E+05	4.9%	2.3%	3.92E+05	4.03E+05
Truck/Tank-Mounted Guns, Missiles	516	2.64E+04	0.3%	0.1%	2.31E+04	2.37E+04
Jeeps and Motorcycles	9,045	2.15E+05	2.3%	1.1%	1.87E+05	1.92E+05
2 1/2 Ton Trucks	72,403	6.23E+06	67.6%	31.7%	5.42E+06	5.57E+06
Other Trucks and Utility Equipment	1,632	1.44E+05	1.6%	0.7%	1.30E+05	1.33E+05
TOTAL: Ground Forces	94,343	9.22E+06	100.0%	46.9%	8.02E+06	8.25E+06
AIR FORCE						
Fighters	748	1.76E+06	66.4%	8.9%	1.32E+06	9.52E+05
Bombers	82	3.96E+04	1.5%	0.2%	2.97E+04	2.14E+04
Transport	308	2.76E+05	10.4%	1.4%	2.32E+05	1.88E+05
Helicopters	275	8.03E+04	3.0%	0.4%	6.02E+04	4.77E+04
TOTAL: Aircraft	1,413	2.15E+06	81.3%	11.0%	1.64E+06	1.21E+06
Service (Ground) Vehicles	6,235	4.94E+05	18.7%	2.5%	4.94E+05	4.94E+05
TOTAL: Air Force		2.65E+06	100.0%	13.5%	2.13E+06	1.70E+06
NAVY						
Frigates	1	4.48E+04	0.7%	0.2%	3.36E+04	
Corvettes	2	1.79E+04	0.3%	0.1%	1.34E+04	1.57E+04
Missile Attack Boats	39	1.07E+06	15.7%	5.5%	8.06E+05	9.40E+05
Patrol and Mine Craft	351	5.05E+06	73.8%	25.7%	3.79E+06	4.42E+06
Amphibious Craft	324	2.31E+05	3.4%	1.2%	4.53E+05	7.30E+05
Submarines	84	5.56E+04	0.8%	0.3%	5.56E+04	5.56E+04
TOTAL: Naval Vessels	801	6.48E+06	94.6%	33.0%	5.15E+06	6.20E+06
Service (Land) Vehicles	4,077	3.71E+05	5.4%	1.9%	2.95E+05	3.55E+05
TOTAL: Naval Forces		6.85E+06	100.0%	34.9%	5.44E+06	6.56E+06
MILITARY MANUFACTURING: Coal Use		8.87E+05		4.5%	7.10E+05	
MILITARY MANUFACTURING: Electricity Use		4.75E+04	GJ/yr	0.2%	3.80E+04	3.80E+04
TOTAL, ALL MILITARY ENERGY USES ABO	OVE	1.96E+07	GJ/yr	100%	1.63E+07	1.73E+07

ESTIMATE OF ANNUAL FUEL	USE BY '	THE MIL	ITARY S	SECTOR IN DPRK
SUMMARY OF KEY ACTIVITY	LEVEL A	SSUMP	TIONS F	FOR 1990 ESTIMATES
AND ESTIMATES FOR 1996 AI				
	ND 2000			
Detailed Data and Results	I			
Prepared By: David Von Hip Date Last Modified: 6/6/2002				
JPDATE 2002				
GROUND FORCES				
Hours of Maneuvers Per Year, 1990:				1000
Hours of Maneuvers Per Year, 1996:				870
Hours of Maneuvers Per Year, 2000:				957
AIRCRAFT				
Mission Hours Per Year:	1990	1996	2000	
Fighters/Bombers	24	18	13	THIS SECTION OF
Transport Aircraft	50	42	34	
Helicopters	32	24	19	THIS WORKSHEE
Ave. airspeedFract. of Maximum	80%	80%	80%	
				NOT USED FOR
				THIS ANALYSIS
MILITARY SHIPS AND BOATS				THIS ANAL I SIS
	4000	4000	0000	-
<u>Active Hours Per Year in:</u> Amphibious	1990 50	1996 50	2000 50	4
Submarines	100	100	100	
Other Vessels	800	600	700	
Ave. power useFract. of Maximum	50%	50%	50%	
PROJECTION OF ENERGY REQUIRM	ENTS FOR M	IILITARY P	RODUCT M	IANUFACTURING
Ratio of Military Equipment Output in				0.8
Ratio of Military Equipment Output in	2000 versus	1990:		0.8

ESTIMATE OF ANNUAL FUEL USE BY THE MILITARY SECTOR IN DPRK SUMMARY: FUEL USE IN EQUIPMENT, ALL MILITARY BRANCHES--1990

Summary Graphics

Date Last Modified:


Prepared By:

David Von Hippel 6/6/2002

UPDATE 2002

MILITARY BRANCH	Fuel Cons	Fraction	Fraction
Equipment	GJ	of Branch	of Total
GROUND FORCES			
Tanks/Heavy Arms	2.63E+06	28.6%	14.1%
2 1/2 Ton Trucks	6.23E+06	67.6%	33.3%
Oth Trucks/Utility	3.59E+05	3.9%	1.9%
TOTAL: Ground Forces	9.22E+06	100.0%	49.3%
AIR FORCE			
Fighters/Bombers	1.80E+06	67.9%	9.6%
Transport/Helic.	3.56E+05	13.4%	1.9%
Service (Grnd) Veh.	4.94E+05	18.7%	2.6%
TOTAL: Air Force	2.65E+06	100.0%	14.2%
NAVY			
Patrol Craft	5.05E+06	73.8%	27.0%
Other Vessels	1.42E+06	20.8%	7.6%
Service (Land) Veh.	3.71E+05	5.4%	2.0%
TOTAL: Naval Forces	6.85E+06	100.0%	36.6%
			4000/
TOTAL MILITARY EQUIP ENERGY USE	1.87E+07	GJ/yr	100%

Figure 3-16:

ESTIMATES AND PROJECTIONS OF ANNUAL FUEL USE BY THE MILITARY SECTOR IN THE DPRK: MILITARY GROUND VEHICLES AND ARMAMENTS UPDATE 2002

Prepared By:	David Von Hippel	
Date Last Modified:	6/8/2002	
Summary Input Data and Re	esults	
Hours of Ground Maneuvers Per	Year, 1990:	1000
Hours of Ground Maneuvers Per	Year, 1996:	870
Hours of Ground Maneuvers Per	Year, 2000:	957

							19	990	
	Est.	Fuel Econor	ny Range	Fract. of	Ave. Speed	Annual	Fuel Cons	Fuel Cons	Fraction
Vehicle Types	Number	(km per C	Gallon)	Time in Use	when in Use	Hrs Use	(liters)	GJ	of Total
Notes				1	2				
Tanks	5,832	1.97	2.08	50%	25	500	5.46E+07	2.05E+06	22.2%
Amphibious Vehicles	900	1.04	26.50	50%	20	500	2.78E+06	1.04E+05	1.1%
Armored Fighting Vehicles	4,015	6.53	7.50	50%	30	500	1.38E+07	4.50E+05	4.9%
Truck/Tank-Mounted Guns, Missiles	516	1.97	6.44	25%	20	250	7.06E+05	2.64E+04	0.3%
Jeeps and Motorcycles	9,045	26.50	50	50%	30	500	6.61E+06	2.15E+05	2.3%
2 1/2 Ton Trucks	72,403	8.63		50%	30	500	1.91E+08	6.23E+06	67.6%
Other Trucks and Utility Equipment	1,632	3.85	8.63	50%	25	500	3.97E+06	1.44E+05	1.6%
TOTALS	94,343						2.74E+08	9.22E+06	100.0%
Diesel Consumption							6.09E+07	2.29E+06	24.8%
Gasoline Consumption							2.13E+08	6.93E+06	75.2%

Notes:

1 This fraction is assumed to be 25% for vehicles used primarily in engineering operations, 50% for most others.

2 Average speed applies to most, but not necessarily all, vehicles in class.

							1996			2000	
	Est.	Fuel Econ	omy Range	Fract. of	Ave. Speed	Annual	Fuel Cons	Fuel Cons	Annual	Fuel Cons	Fuel Cons
Vehicle Types	Number	(km pei	r Gallon)	Time in Use	when in Use	Hrs Use	(liters)	GJ	Hrs Use	(liters)	GJ
Notes				1	2						
Tanks	5,832	1.97	2.08	50%	25	435	4.75E+07	1.78E+06	478.5	4.88E+07	1.83E+06
Amphibious Vehicles	900	1.04	26.50	50%	20	435	2.42E+06	9.08E+04	478.5	2.49E+06	9.33E+04
Armored Fighting Vehicles	4,015	6.53	7.50	50%	30	435	1.20E+07	3.92E+05	478.5	1.24E+07	4.03E+05
Truck/Tank-Mounted Guns, Missiles	516	1.97	6.44	25%	20	217.5	6.14E+05	2.31E+04	239.25	6.31E+05	2.37E+04
Jeeps and Motorcycles	9,045	26.50	50	50%	30	435	5.75E+06	1.87E+05	478.5	5.91E+06	1.92E+05
2 1/2 Ton Trucks	72,403	8.63		50%	30	435	1.67E+08	5.42E+06	478.5	1.71E+08	5.57E+06
Other Trucks and Utility Equipment	1,632	3.85	8.63	50%	25	435	3.45E+06	1.30E+05	478.5	3.55E+06	1.33E+05
TOTALS	94,343						2.38E+08	8.02E+06		2.45E+08	8.25E+06
Diesel Consumption							5.30E+07	1.99E+06		5.44E+07	2.05E+06
Gasoline Consumption							1.85E+08	6.03E+06		1.90E+08	6.20E+06

ESTIMATE OF ANNUAL FUEL USE BY THE MILITARY SECTOR IN THE DPRK MILITARY GROUND VEHICLES AND ARMAMENTS UPDATE 2002

Detailed Data and Results

Prepared By:	David Von Hippel
Date Last Modified:	6/3/2002

· •				
	COMMON ASSUMPTIONS & F	PARAMETE	RS	
	GROUND FORCES			
	Hours of Maneuvers Per Year	, 1990:	1000	
	Hours of Maneuvers Per Year	, 1996:	870	
	Hours of Maneuvers Per Year	, 2000:	957	Note 24
	Fraction of Stock Unuseable:		20%	Note 21
	Conversion Factor:	3.8	liters/gal	
	Diesel Energy Content:	0.037584	GJ/liter	
	Gasoline Energy Content:	0.03253	GJ/liter	

Estimate of Number of Vehic	les In M	ilitary Fle	et				мото	RIZED E	QUIPME	NT, BY	ТҮРЕ, Р	PER UN	IT				
Branch or Unit of Ground Forces	Number	Personnel per Unit	TOTAL Personnel	Notes		TANKS		AM	PHIBIOU	JS VEH.	AND T	ANK RT	V R	F1	ORED IG. CLES	GUNS,	MISSILES
					Medium	Med: T62/		PT-76	PTS	K-61		AMPHI	Tank			AAG	BM-21
		10.050			T-54/55	63/PT-76	ASLT	Lt Amph	Trk Amph	Trk Amph	GAZ-46	FERRY	Retriever	BTR-60	BRDM	ZSU-57	(URAL-375)
Reserve Infantry Divisions	26	10,359	269,334	1	31	2							1				
Reserve-Infantry Brigades Infantry Divisions	18 30	8,296	149,328 310,770	2	31	2											
		10,359	,	1	_	2							1	000			
Truck Mobile Divisions	1	8,194	8,194	5	93			16)				8	330			18
Infantry Brigades	4	8,296	33,184	2					-					00	45		
Truck Mobile Brigades	20	4,781	95,620	4		31		Ę)				-	99			
Armored Brigades	15	2,481	37,215	3	6	133							/	58	3	6	6
Special Operations Brigades	22	4 400	- 150	6			0.5										
Elite Training Regiments		1,490	7,450				95	10)		_		6				
Engineering River Regiments		1,660	8,300							60	7	12					
SAM Regiments		1,112	5,560														
AAA Regiments		529	2,645													30	
FROG Battalions	-	173	1,730														
Command and Support		338	338														
Artillery Regiments		735	2,205														
MRL Regiment		751	751														30
AAA Regiments		529	1,058														
Engineering Regiment		1,206	1,206						10	20							
Signal Battalion		299	299														
Decon Battalion	1	315	315														
ATGM Company Field Hospital	1	81 435	81 435														
Field Hospital	1	435	435														
TOTAL INDICATED LAND FORCES			936,018		1,919	2,727	475	166	10	320	35	60	199	3,180	345	240	138
Reported Ground Personnel	(as of 199	0)	1.07E+06	7, 23			5,121						790		3,525		
	、 True-Up Fa		1.14		2,185	3,106	541	189	11	364	40	68	227	3,622	393	273	157
Equipment Totals by Category				-			5,832						900		4,015		

Estimate of Number of Vehic	les In M	ilitary Fle	et					мото	RIZED E		ENT, BY	ТҮРЕ	E, PEF	R UNIT				
Branch or Unit of Ground Forces	Number	Personnel per Unit	TOTAL Personnel	Notes	GUNS, I	VISSILES	(Cont.)	LIGHT	VEH.			TRI	JCKS	AND U	TILITY	VEHICL	.ES	
					BM-20,24	FROG 3/5	FROG 7		Motor-	2.5 T							Power	Oth Hvy
					(ZIL-151,7)	(PT-76)	(ZIL-135)	JEEPS	Cycles	Truck	Dump Z	il-135	Zil-151	KRAZ-214	GAZ-63	Zil-157V	Boats	Equip.
Reserve Infantry Divisions	26	10,359	269,334	1				57	29	692								
Reserve-Infantry Brigades	18	8,296	149,328	2				39	29	503								
Infantry Divisions	30	10,359	310,770	1				57	29	692								
Truck Mobile Divisions	1	8,194	8,194	5				56		255								
Infantry Brigades	4	8,296	33,184	2				39	29	503								
Truck Mobile Brigades	20	4,781	95,620	4				28	8	376								
Armored Brigades	15	2,481	37,215	3				26		162								
Special Operations Brigades	22			6														
Elite Training Regiments	5	1,490	7,450					14	14	133								
Engineering River Regiments	5	1,660	8,300					10		148			96	18	72		24	15
SAM Regiments	5	1,112	5,560					8		60						36		
AAA Regiments	5	529	2,645					14		104								
FROG Battalions	10	173	1,730			3	3 3			54		3				3		
Command and Support	1	338	338					44	30	68								
Artillery Regiments	3	735	2,205					4		75								
MRL Regiment	1	751	751		15			10		48								
AAA Regiments	2	529	1,058					14		104								
Engineering Regiment	1	1,206	1,206					9		103	23						12	33
Signal Battalion	1	299	299					5	20	37								
Decon Battalion	1	315	315					1		30								
ATGM Company	1	81	81					1		5								
Field Hospital	1	435	435					4		63								
TOTAL INDICATED LAND FORCES								E 100	0.540				100				400	
		2)	936,018	7.00	15	30		5,400	2,542	63,575	23	30	480	90	360	210	132	108
Reported Ground Personnel	``````	,	1.07E+06	, -			453		7,942	63,575								1,433
TRUED-UP LAND FORCES	True-Up Fa	ctor, '90/96:	1.14		17	34		6,150	2,895	72,403	26	34	547	102	410	239	150	123
Equipment Totals by Category							516		9,045	72,403								1,632

					мото	RIZED E	QUIPME	NT, BY ⁻	TYPE, F	PER UN	IT				
												ARM			
				TANK									G.		
			Mariliana	TANKS		PT-76	PHIBIOU		AND IA			VEHI	CLES	GUNS, AAG	MISSILES
Fuel Her Fills Onlands form			Medium	Med: T62/			PTS	K-61		AMPHI	Tank				BM-21
Fuel Use Effic. Calculations	Units	Note		63/PT-76	ASLT	Lt Amph	Trk Amph								(URAL-375)
Reported Range	km		500			260			530	500	300		750		650
Reported Fuel Capacity (Est)	gal		254	240	150	67	240	67	20	480	148	76.6	100	254	110
Reported Horsepower	hp								55						180
Payload	ton						5.5		0.4	11					4.9
Fuel Used			Diesel	Diesel		Diesel									Diesel??
Fuel Use Efficiency	km/gal		1.97	2.08	2.00	3.88	3 2.08	3.88	26.50	1.04	2.03	6.53	7.50	1.97	5.91
Notes			8	8, 9	8	8	12	13	14	15	8	8	16		11
Operating Assumptions															
Fract. Time In-Use During Maneuvers			50%	50%	50%	50%	50%	50%	50%	25%	25%	50%	50%	25%	25%
Average Speed During Maneuvers	km/hr		25	25	25	20	20	20	20	15	15	30	30	20	20
Hours of Operation, 1990	hrs		500	500	500	500	500	500	500	250	250	500	500	250	250
Hours of Operation, 1996	hrs		425	425	425	425	425	425	425	212.5	212.5	425	425	212.5	212.5
Hours of Operation, 2000Recovery Scenario	o hrs		550	550	550	550	550	550	550	275	275	550	550	275	275
Hours of Operation, 2000Decline Scenario	hrs		375	375	375	375	375	375	375	187.5	187.5	375	375	187.5	187.5
Hours of Operation, 2005Recovery Scenario	hrs hrs		580	580	580	580	580	580	580	290	290	580	580	290	290
Hours of Operation, 2005Decline Scenario	hrs		425	425	425	425	425	425	425	212.5	212.5	425	425	212.5	212.5
Fuel Consumption Results, 1990															
TOTAL FUEL USED gal		2	2 5.55E+06	7.45E+06	1.35E+06	1.95E+05	2.19E+04	3.76E+05	6.02E+03	4.92E+04	8.39E+04	3.3E+06	3.1E+05	1.39E+05	2.66E+04
By Vehicle Category gal	All Veh.	7.21E+07 2	2		1.44E+07						7.31E+05	1	3.6E+06		
TOTAL FUEL USED liters			2.11E+07	2.83E+07	5.14E+06	7.41E+05	8.31E+04	1.43E+06	2.29E+04	1.87E+05	3.19E+05	1.3E+07	1.2E+06	5.28E+05	1.01E+05
By Vehicle Category liters	All Veh.	2.74E+08			5.46E+07						2.78E+06	1	1.4E+07		
TOTAL FUEL USED GJ			7.93E+05	1.06E+06	1.93E+05	2.78E+04	3.12E+03	5.37E+04	7.44E+02	7.03E+03	1.20E+04	4.1E+05	3.9E+04	1.98E+04	3.80E+03
By Vehicle Category GJ	All Veh.	9.22E+06			2.05E+06						1.04E+05		4.5E+05		

							мото			NT, BY	TYPE, F	PER UN	IIT				I
						TANKS		AM	PHIBIOU	S VEH.	AND TA	NK RT	VR	FT	G.	GUNS,	MISSILES
					Medium	Med: T62/		PT-76	PTS	K-61		AMPHI	Tank			AAG	BM-21
Fuel Use Effic. Calculations		Units		Notes	T-54/55	63/PT-76	ASLT	Lt Amph	Trk Amph	Trk Amph	GAZ-46	FERRY	Retriever	BTR-60	BRDM	ZSU-57	(URAL-375)
Reported Range		km			500	500	300	260	500	260	530	500	300	500	750	500	650
Reported Fuel Capacity (Est)		gal			254	240	150	67	240	67	20	480	148	76.6	100	254	110
Reported Horsepower		hp									55						180
Payload		ton							5.5		0.4	11					4.9
Fuel Used					Diesel	Diesel	Diesel	Diesel	Diesel	Diesel	Gas	Diesel	Diesel			Diesel	Diesel??
Fuel Use Efficiency		km/gal			1.97	2.08	2.00	3.88	2.08	3.88	26.50	1.04	2.03	6.53	7.50	1.97	5.91
Notes					8	8, 9	8	8	12	13	14	15	8	8	16		11
Operating Assumptions																	
Fract. Time In-Use During Maneuvers					50%	50%	50%	50%	50%	50%	50%	25%	25%	50%	50%	25%	25%
Average Speed During Maneuvers		km/hr			25	25	25	20	20	20	20	15	15	30	30	20	20
Hours of Operation, 1990		hrs			500	500	500	500	500	500	500	250	250	500	500	250	250
Hours of Operation, 1996		hrs			435	435	435	435	435	435	435	217.5	217.5	435	435	217.5	217.5
Hours of Operation, 2000		hrs			478.5	478.5	478.5	478.5	478.5	478.5	478.5	239.25	239.25	478.5	478.5	239.25	239.25
Hours of Operation, 2005Recovery Sc	enario	hrs			550	550	550	550	550	550	550	275	275	550	550	275	275
Hours of Operation, 2005Decline Scen	nario	hrs			375	375	375	375	375	375	375	187.5	187.5	375	375	187.5	187.5
Hours of Operation, 2010Recovery Sc	enario	hrs			580	580	580	580	580	580	580	290	290	580	580	290	290
Hours of Operation, 2010Decline Scen	nario	hrs			425	425	425	425	425	425	425	212.5	212.5	425	425	212.5	212.5
Fuel Consumption Results, 19	90																-
TOTAL FUEL USED ga				22	5.55E+06	7.45E+06	1.35E+06	1.95E+05	2.19E+04	3.76E+05	6.02E+03	4.92E+04	8.39E+04	3.3E+06	3.1E+05	1.39E+05	2.66E+04
By Vehicle Category ga		All Veh.	7.21E+07	22			1.44E+07						7.31E+05		3.6E+06		1
TOTAL FUEL USED	ers				2.11E+07	2.83E+07	5.14E+06	7.41E+05	8.31E+04	1.43E+06	2.29E+04	1.87E+05	3.19E+05	1.3E+07	1.2E+06	5.28E+05	1.01E+05
By Vehicle Category lit	ers	All Veh.	2.74E+08				5.46E+07						2.78E+06		1.4E+07		
TOTAL FUEL USED G	iJ				7.93E+05	1.06E+06	1.93E+05	2.78E+04	3.12E+03	5.37E+04	7.44E+02	7.03E+03	1.20E+04	4.1E+05	3.9E+04	1.98E+04	3.80E+03
By Vehicle Category G	iJ	All Veh.	9.22E+06				2.05E+06						1.04E+05		4.5E+05		
Fuel Consumption Results, 19	96																
TOTAL FUEL USED ga	al			22	4.83E+06	6.48E+06	1.18E+06	1.70E+05	1.90E+04	3.27E+05	5.23E+03	4.28E+04	7.30E+04	2.9E+06	2.7E+05	1.21E+05	2.31E+04
	al	All Veh.	6.27E+07	22			1.25E+07						6.36E+05		3.2E+06		
TOTAL FUEL USED lit	ers				1.84E+07	2.46E+07	4.47E+06	6.44E+05	7.23E+04	1.24E+06	1.99E+04	1.63E+05	2.77E+05	1.1E+07	1.0E+06	4.59E+05	8.79E+04
,		All Veh.	2.38E+08				4.75E+07						2.42E+06		1.2E+07		
TOTAL FUEL USED G	-				6.90E+05	9.26E+05	1.68E+05	2.42E+04	2.72E+03	4.67E+04	6.47E+02	6.11E+03	1.04E+04	3.6E+05	3.4E+04	1.73E+04	3.30E+03
By Vehicle Category G	iJ	All Veh.	8.02E+06				1.78E+06						9.08E+04		3.9E+05		
Fuel Consumption Results, 200	00																
TOTAL FUEL USED ga	al			22	4.96E+06	6.66E+06	1.21E+06	1.74E+05	1.96E+04	3.36E+05	5.38E+03	4.40E+04	7.50E+04	3.0E+06	2.8E+05	1.24E+05	2.38E+04
	al	All Veh.	6.44E+07	22			1.28E+07						6.54E+05	l l	3.3E+06		
TOTAL FUEL USED	ers				1.89E+07	2.53E+07	4.60E+06	6.62E+05	7.43E+04	1.28E+06	2.04E+04	1.67E+05		1.1E+07	1.1E+06	4.72E+05	9.04E+04
By Vehicle Category lit	ers	All Veh.	2.45E+08				4.88E+07						2.49E+06		1.2E+07		
TOTAL FUEL USED G	-				7.09E+05	9.52E+05	1.73E+05	2.49E+04	2.79E+03	4.80E+04	6.65E+02	6.28E+03	1.07E+04	3.7E+05		1.77E+04	3.40E+03
By Vehicle Category G	iJ	All Veh.	8.25E+06				1.83E+06						9.33E+04		4.0E+05		

							мото	RIZED E		ENT, B	Υ ΤΥΡ	E, PEF	R UNIT				
				GUNS, I	MISSILES	(Cont.)	LIGHT	VEH.			TR	UCKS	AND UT	FILITY V	VEHICL	ES	
				BM-20,24	FROG 3/5	FROG 7		Motor-	2.5 T							Power	Oth Hvy
Fuel Use Effic. Calculations	Units		Notes	(ZIL-151,7)	(PT-76)	(ZIL-135)	JEEPS	Cycles	Truck	Dump	Zil-135	Zil-151	Kraz-214	GAZ-63	Zil-157V	Boats	Equip.
Reported Range	km			600, 430	260	500	530		345	530	500	600	530	345	430		
Reported Fuel Capacity (Est)	gal			,	67	130	20		40	130	130	80	130	40	80		
Reported Horsepower	ĥp			92, 109		180	54		70	205	180	92	205	55	109	28	
Payload	ton					11			2.2	7.7	11	2.7	7.7	2.2			
Fuel Used				Diesel??	Diesel	Gas	Gas	Gas	Gas	Diesel	Gas	Diesel??	Diesel	Gas	Diesel??	Diesel??	Diesel??
Fuel Use Efficiency	km/gal			6.4375	3.88	3.85	26.50	50	8.63	4.08	3.85	7.50	4.08	8.63	5.38	0.195	5.38
Notes				11		17		19	10	17	17	11	11	10	11	l/hp-hr 20	18
Operating Assumptions																	
Fract. Time In-Use During Maneuvers				25%	25%	25%	50%	50%	50%	50%	50%	50%	50%	50%	50%	25%	25%
Average Speed During Maneuvers	km/hr			20	20	20	30	30	30	25	25	25	25	25	25		15
Hours of Operation, 1990	hrs			250	250	250	500	500	500	500	500	500	500	500	500	250	250
Hours of Operation, 1996	hrs			217.5	217.5	217.5	435	435	435	435	435	435	435	435	435	217.5	217.5
Hours of Operation, 2000	hrs			239.25	239.25	239.25	478.5	478.5	478.5	478.5	478.5	478.5	478.5	478.5	478.5	239.25	239.25
Hours of Operation, 2005Recovery Scenario	hrs hrs			275	275	275	550	550	550	550	550	550	550	550	550	275	275
Hours of Operation, 2005Decline Scenario	hrs			187.5	187.5	187.5	375	375	375	375	375	375	375	375	375	187.5	187.5
Hours of Operation, 2010Recovery Scenario	hrs hrs			290	290	290	580	580	580	580	580	580	580	580	580	290	290
Hours of Operation, 2010Decline Scenario	hrs			212.5	212.5	212.5	425	425	425	425	425	425	425	425	425	212.5	212.5
Fuel Consumption Results, 1990																	
TOTAL FUEL USED gal	_		22	2.65E+03	8.80E+03	8.88E+03	1.39E+06	3.47E+05	5.04E+07	3.2E+04	4.4E+04	3.6E+05	1.3E+05	2.4E+05	2.2E+05	0.0E+00	1.7E+04
By Vehicle Category gal	All Veh.	7.21E+07	22			1.86E+05		1.74E+06	5.04E+07								1.0E+06
TOTAL FUEL USED liters				1.01E+04	3.35E+04	3.38E+04	5.29E+06	1.32E+06	1.91E+08	1.2E+05	1.7E+05	1.4E+06	4.8E+05	9.0E+05	8.5E+05	0.0E+00	
By Vehicle Category liters	All Veh.	2.74E+08				7.06E+05		6.61E+06	1.91E+08								4.0E+06
TOTAL FUEL USED GJ				3.79E+02	1.26E+03	1.10E+03	1.72E+05	4.29E+04	6.23E+06	4.6E+03	5.5E+03	5.2E+04	1.8E+04	2.9E+04	3.2E+04	0.0E+00	
By Vehicle Category GJ	All Veh.	9.22E+06				2.64E+04		2.15E+05	6.23E+06								1.4E+05
Fuel Consumption Results, 1996																	
TOTAL FUEL USED gal	_		22	2.31E+03	7.66E+03	7.73E+03	1.21E+06	3.02E+05	4.38E+07	2.8E+04	3.9E+04	3.2E+05	1.1E+05	2.1E+05	1.9E+05	0.0E+00	1.5E+04
By Vehicle Category gal	All Veh.	6.27E+07	22			1.62E+05		1.51E+06	4.38E+07								9.1E+05
TOTAL FUEL USED liters				8.77E+03	2.91E+04	2.94E+04	4.60E+06	1.15E+06	1.67E+08	1.1E+05	1.5E+05	1.2E+06	4.2E+05	7.9E+05	7.4E+05	0.0E+00	
By Vehicle Category liters	All Veh.	2.38E+08				6.14E+05		5.75E+06	1.67E+08								3.5E+06
TOTAL FUEL USED GJ				3.30E+02	1.09E+03	1.10E+03	1.50E+05	3.74E+04	5.42E+06	4.0E+03	5.5E+03	4.5E+04	1.6E+04	3.0E+04	2.8E+04	0.0E+00	-
By Vehicle Category GJ	All Veh.	8.02E+06				2.31E+04		1.87E+05	5.42E+06								1.3E+05
Fuel Consumption Results, 2000																	
TOTAL FUEL USED gal			22		7.87E+03	7.94E+03	1.25E+06	3.11E+05	4.50E+07	2.9E+04	4.0E+04	3.3E+05	1.1E+05	2.1E+05	2.0E+05	0.0E+00	
By Vehicle Category gal	All Veh.	6.44E+07	22			1.66E+05		1.56E+06	4.50E+07								9.3E+05
TOTAL FUEL USED liters				9.02E+03	2.99E+04	3.02E+04	4.73E+06	1.18E+06	1.71E+08	1.1E+05	1.5E+05	1.2E+06	4.3E+05	8.1E+05	7.6E+05	0.0E+00	
By Vehicle Category liters	All Veh.	2.45E+08				6.31E+05		5.91E+06	1.71E+08								3.5E+06
TOTAL FUEL USED GJ	All Mak	0.055		3.39E+02	1.12E+03	1.13E+03	1.54E+05	3.84E+04	5.57E+06	4.1E+03	5.7E+03	4.7E+04	1.6E+04	3.0E+04	2.8E+04	0.0E+00	
By Vehicle Category GJ	All Veh.	8.25E+06				2.37E+04		1.92E+05	5.57E+06								1.3E+05

NOTES:

- 1 "Infantry Division" from North Korea Handbook, page 5-5
- 2 "Basic Corps Independent Infantry Brigade" from Opposing Force Training Module, p. 11-13
- 3 "Tank Brigade" from North Korea Handbook, page 5-31
- 4 "Mechanized Infantry Brigade" from North Korea Handbook, page 5-37
- 5 "Mechanized Infantry Division--Strategic Forces Command" from Opposing Force Training Module, p. 11-3
- 6 "Special Operations Brigades" are assumed to be those units listed in the Opposing Force Training Module as being under either the Strategic Forces Command or the Basic Army Corps, but which are not obviously included in the force units accounted for separately here.
- 7 From "Military Balance: North vs. South" Unclassified DOD document, September 27, 1993.
- 8 From Opposing Force Training Module, pp. 13-16 13-22.
- 9 For T-62. Pt-76 is a lighter, amphibious tank with a range of 260 km and a fuel load of 67 gal, but the ratio of the two types is not known.
- 10 Engine size and range are as listed for the older but similar Sungni-58, which is reported to be very fuel-inefficient. Fuel tank capacity is a guess. Data from reference 8, page 13-29.
- 11 Estimates based on measurements of drawings in reference 8.
- 12 Carriage, size seem similar to T-62 tank.
- 13 Carriage, size seem similar to PT-76 tank.
- 14 Built on Jeep chassis--assumed to have similar performance
- 15 Ferry consists of two tracked vehicles, each of which is assumed to have performance like T-62 tank.
- 16 Carriage seems similar to GAZ-66 2.2 ton truck. Fuel capacity for latter estimated based on measurement of drawings in reference 8.
- 17 Assumed similar to KRAZ-214.
- 18 Assumed similar to Zil-157V on average. Reference 8 lists the lighter Zil-151 as one of the prime movers used for cranes.
- 19 Rough Estimate
- 20 Assumes boats will have similar engines to tractors, with similar fuel consumption.
- 21 Unusable equipment includes equipment rendered unusable by age, rust, or lack of spare parts.
- 22 Energy use as calculated here excludes fuel that would be used by equipment considered unusable.
- 23 Republic of Korea National Intelligence Service, "North Korea Military. The KPA: Troops & Equipment", from http://www.fas.org/irp/world/rok/nis-docs/defense08.htm, visited 5/21/02, lists the total ground forces for the DPRK at a total of 996,000 troops in 20 corps units. Assuming that this estimate holds for the year 2000, a "true-up factor" for the equipment estimates above of 1.06408 is implied.
- 24 It has not been possible to obtain unclassified information that provides any specific information on recent fuel use by the DPRK military. Analysts contacted regarding the "tempo" of recent DPRK military exercises, and reports in the media (for example, "NK Ground Exercises Up as Navy and Air Force Decline", Yoo Yong-won, www.chosun.com, 2001- 9-10) suggest that the DPRK military exercise tempo for ground forces has increased somewhat in recent years, but not substantially, and that some of the apparent increase in exercises may be an increase in the number of soldiers involved, but not necessarily the number of fuel-using vehicles and armaments. Accordingly, we assume that the average hours of annual use by ground vehicles in 2000 was 10 percent higher than in 1996.

A2 - 11

ESTIMATE OF ANNUAL FUEL USE BY THE MILITARY SECTOR IN THE DPRK MILITARY AIRCRAFT UPDATE 2002

MILITARY AIRCRAFT
Detailed Data and Results

COMMON ASSUMPTIONS & PARAMETERS--AIRCRAFT USE

Detailed Data and Results				COM	MON AS	SUMP	'IION	S & PAR	AMETER	SAIRCI	RAFIUS	E					
Prepared By:	David Von Hippe	el										(5	See Note 22	2)			
Date Last Modified:	6/8/2002			Missi	on Hour	s Per	Year:				1990	1996	2000				
				Fighte	ers/Bom	bers ((Note	13)			24	18	13	н тнк	SSECT	ION OF	IHIS
					port Air		(,			50	-	34		RSHEE		USED
				Helico		orait					32	24	19				
								Maximum			80%	80%	80%	FC		ANALY	SIS
															00/0	0070	
								Cont. (G.				Note 15					
				Aviatio	on Gaso	line Er	nergy (Cont. (GJ/	'ltr)		0.03209	Note 15	5				_
															990	1996	200
			Num	oer in A	Air Force	•		umber in		Fuel	Max.	Cruise	Ave. Fuel	Total Fuel	Total Fuel	Total Fuel	Total F
			Estima	tes fror	n Sourc	es	Ai	r Force	Range	Capacity	Speed	Speed	Consumpt	Consumpt	Consumpt	Consumpt	Consu
Type of Aircraft	Class	1	2	3	4	17 1	18 As	ssumed	km	liters	km/hr	km/hr	l/hr	liters	GJ	GJ	GJ
		Notes:						19	14	14	14	14				1	
Fixed Wing								-									
F-5 (MIG-17) Fresco	Fighter	1:	30		140		120	130	1270	2365	1145		1706	5.32E+06	1.86E+05	1.40E+05	1.01E
F-6 (MIG-19) Farmer	Fighter/Bomber		50 50 160		110 >		160	160	1390	2170	1590		1986				
MIG-21 Fishbed D/F/J	Fighter		50 100 50 120				160	160	971	2340	2230		4299			4.33E+05	
F-7 (Fishbed C)	Fighter		120 120		130	120	100	40	1203	2340 2340	2230		4299 3470	3.33E+07		4.33E+05 8.74E+04	
(U U					40	45	-									
MIG-23 Flogger B/C/E/G/K			46			46	45	46	1800	5750	2440		6236			1.81E+05	
MIG-29 Fulcrum A/B	Fighter		10 "2 reg"	13			15	13	2100	4365	2440		4057	1.27E+06			-
MIG-15 Fagot	Fighter	5			180		190	144	1368	2365	1017		1407		1.70E+05		
SU-7B Fitter A	Fighter	2	20 20		20	20	20	20	1450	5275	1696	850		2.37E+06			
SU-25 Frogfoot A	Fighter	9	35 >20	36		36	35	35	1250	4568	848		2479	2.08E+06	7.29E+04	5.47E+04	3.95E
IL-28 Beagle	Bomber	8	30 82		85	82	80	82	2180	1740	900		575	1.13E+06	3.96E+04	2.97E+04	2.14E
Y-5 (AN-2 Colt)	Transport	20 27	70 >250		205	270 >3	300	270	900	1200	220		235	3.17E+06	1.02E+05	8.54E+04	6.91E
AN-24 (Coke)	Transport		6 10			10		6	600	5550	484		3582			2.90E+04	
IL-18 Coot	Transport		2					2	6500	30000	675	625	2885				
IL-12 Coach (Civil)	Transport	6.10.11	-					10	1500	6500	675		2708			3.65E+04	
LI-2 Cab (Civil)	Transport	6,10,11						10	1500	6500	675		2708			3.65E+04	2.96E
IL-14 Crate (Civil)	Transport	6, 10						10	1500	6500	675		2708			3.65E+04	
()	папърон	,	740	748	580			-	1500	0500	075	025	2706				
Fighters (All)		60						748						5.03E+07			
Bombers (All)			80 82		85			82						1.13E+06			
Transport (All)		27	<mark>78</mark> 310	310	205			308						8.59E+06	2.76E+05	2.32E+05	1.88E
Helicopters					_												
MI-2 Hoplite		7	"Most"			188		113	715	846	210				2.31E+04		-
MI-4 Hound		8, 12			75			45	325	846	210	160			1.92E+04		1.14E
MI-8 Hip		8						30	475	1870	250	225	886	8.50E+05	2.73E+04	2.05E+04	1.62E
MI-17 Hip									475	1870	250	240	945				
Hughes 500 D/E			87		>75	87		87	480	240	250	240	120	3.34E+05	1.07E+04	8.04E+03	6.37E
All			275		-	-		275					10	2.50E+06		6.02E+04	
										Kerosen	e/Jet Fue	/		5.14E+07			
										Aviation				1.11E+07	3.56E+05	2.92E+05	-
ALL AIRCRAFT								1413		TOTAL A						1.64E+06	
-	00.000	0.04						1413		IUIAL A	LL FUEL	.5		0.25E+07	2.15E+06	1.04±+06	1.21E
Air Force Personnel	80,000	- /												4 505		1.045.05	100
Service Vehicles	6,235	16										_				4.94E+05	
TOTAL: AIRCRAFT PLUS GRO	UND SUPPORT V	EHICLES								TOTAL A	LL FUEL	.S		7.76E+07	2.65E+06	2.13E+06	1.70E

Notes:

- 1 North Korea Handbook, US Department of Defense, 1994. (PC-2600-6421-94). Pages 6-165 6-178.
- 2 North Korea, The Foundations for Military Strength. US Defense Intelligence Agency (1990?). Pp. 47-48.
- 3 Point Paper, Republic of Korea/North Korea: Military Capabilities (with Military Balance). JICPAC (ONK), Sept. 1993.
- 4 From <u>Opposing Force Training Module, North Korean Military Forces. Field Manual No. 34-21</u>. Headquarters Department of the Army (US). February, 1982. Chapter 14.
- 5 Not given in source 1. Number assumed brings total of fighters up to that listed in sources 2 and 3.
- 6 Not given in source 1. Numbers assumed are guesses to bring total of transports to figures listed in sources 2 and 3.
- 7 Not given in source 1. Number assumed brings total of helicopters up to that listed in sources 2 and 3.
- 8 No breakdown between MI-4 and MI-8 available. Breakdown assumed is a guess. MI-8 and MI-17 are similar aircraft.
- 9 Fuel capacity estimated based on (max weight empty weight weapons weight).
- 10 No information available (1940's vintage aircraft). Range and fuel capacity assumed similar to IL-14.
- 11 Speed assumed similar to IL-18.
- 12 Fuel capacity assumed similar to the MI-2.
- 13 Translates to approximately two 1-hr missions per month per aircraft.
- 14 Fuel Capacity data are from the following sources: A) <u>Jane's All the World's Aircraft</u>, 1990/91, 1981/82, 1972/73, and 1968/69 editions. Jane's Publishing Co., N.Y., NY; B) <u>Air Forces of the World</u>, C.Chant, Brian Trodd Publishing House, Ltd (1990); C) <u>Military Aircraft of the World</u>, J.W.R. Taylor and G/ Swanborough, Ian Allen Ltd., UK (1979). Range and airspeed data are from a mixture of these sources and sources 1 and 4, above.
- 15 All jet aircraft are assumed to use Kerosene/Jet Fuel, while all propeller-driven craft and helicopters are assumed to use Aviation Gasoline.
- 16 Ground support vehicles for Air Force assumed to include light vehicles, 2 1/2 ton trucks, and larger trucks and utility vehicles in the same proportions as are used in the ground forces. The number of these vehicles per person in the Air Force is assumed to be the same as in the DPRK Army.
- 17 <u>North Korea Country Handbook</u>, Marine Corps Intelligence Activity, 1997. (MCIA-2630-NK-016-97). File Nkor.pdf, obtained from Federation of American Scientists WWW site, 5/21/02, and dated May, 1997. Data on aircraft are mostly from pages 36 to 38 of this document.
- 18 <u>North Korea. The Foundations for Military Strength -- Update 1995</u>. US Defense Intelligence Agency (1995). Obtained from Federation of American Scientists WWW site, 5/21/02, and dated December, 1995.
- 19 As estimates of the numbers of aircraft from newer information sources (17 and 18) are not significantly different from those in earlier documents, we will continue to use the composite estimates of total aircraft shown here for 1996 and 2000 aircraft fuel use estimates.
- 20 Republic of Korea National Intelligence Service (1999), <u>North Korea Military. The KPA: Troops & Equipment</u> http://www.fas.org/irp/world/rok/nis-docs/defense08.htm, visited 5/21/02. This cource lists the DPRK Air Force as having "a whopping 820 support aircraft and helicopters", but does not indicate of what types are the approximately 200-plus aircraft beyond those listed in other sources (that is, apart from the AN-2 units and helicopters, the totals of which are similar to the listings above).
- 21 Republic of Korea National Intelligence Service, "North Korea Military. The KPA: Troops & Equipment", from http://www.fas.org/irp/world/rok/nis-docs/defense08.htm, visited 5/21/02, lists the total air force personnel for the DPRK at a total of 103,000, somewhat above the figure used here, but as the personnel totals do not directly affect fuel use estimates for this branch of the service, the figure from source 3 is used.
- 22 Unclassified informaiton on fuel use in the DPRK military was not available, but the informal opinion or analysts familiar with the DPRK military situation suggests that air force activity in the DPRK is, if anything, declining slowly, perhaps due to lack of fuel, probably due to lack of spare parts, and probably due to a recognition on the part of the DPRK military command that in a real conflict, the DPRK Air Force is unlikely, given the age and condition of its equipment, to play a substantial role. Accordingly, we have assumed that DPRK Air Force training exercises have continued to decrease slowly since 1996, as reflected in the flight-hours estimates shown.

MILITARY SHIPS A	ND BOA	TS	UPD	ATE 200)2								
Detailed Data and Res	ults		COMMON AS	SUMPTIO	NS & PAR		-NAVAL	ENERGY	USE				
Prepared By:	David Von H	Hippel							(Note 30)				
Date Last Modified:	6/3/2002		Active Hours	Per Year i	n:		1990	1996	2000				
			Amphibious				50		50	-		ON OF 1	
			Submarines				100		100	WOR	KSHEE	Τ ΝΟΤ Ι	JSED
			Other Vessel	8			800		700	FO	R THIS	ANALYS	SIS
True-Up Factors (see Note 1	4)	1	Ave. power u		of Max.		50%		50%				
Missile Attack Boats:	1.50		Marine Diese				0.38		0070	0070	0070	0070	
Amphibious:	1.46		Sub Diesel Fu				0.5						
					,						2 70		
Other Sm. Surface Vessels:	1.04		Diesel Energy					GJ/liter	Liters per	galion	3.78		
			Conversion F				0.87	lb/kg					
			Diesel Fuel D	ensity			0.87	kg/liter					
	1	r	1	Numbor	in DPRK I			Number	r			Engine	
					s from Sou			in Navy	Displcmt	Pango	Speed	Power	
	Class		1 2				3 24			0	•		
Type of Vessel	Class		1 2	3 4	4 5	22 23	5 24	Assumed	Tons	n.miles	knots	(b/s/hp)	
	E-Sector	Notes:			-	0	<u> </u>		4000	1000	6	5	-
Nanjin Class	Frigate	21			4	2	² 2	1	1800	4000	14	15000	
T (Tral) Class	Lg Patrol	I			2		1.	2	475		18	3000	
Sariwon Class	Lg Patrol	I			3	4	4	4	450	4400	21	3000	
SO 1 Class	Lg Patrol					15	18		250	1100	13	7500	
Artillerist Class	Lg Patrol	17			2			2	240	105-	25	7500	
Hainan Class	Lg Patrol	I			4	6	6	-	400	1000	10	8800	
Taechong Class	Lg Patrol	I			2	7 40	- ¹³		400		-	7500	
OSA 1 Class	Missile Att.	I				16 12	26	24	200	800	25	12000	
Komar Class	Missile Att.				10	8 39		15	80	400	30	4800	
Shanghi ClassGun	Fast Att.					12	14		155	800	17	4800	
Swatow ClassGun	Fast Att.				8	8		8	80	500	28	3000	
Chodo ClassGun	Fast Att.				4	4		4	130	2000	10	6000	
K-48 ClassGun	Fast Att.				4	4		4	100		24	5000	
MO IV ClassGun	Fast Att.	13			20			21	56		25	3000	
Chongjin ClassGun	Fast Att.	7				45 31	51		80		40	4800	
P 6Torpedo	Fast Att.	26			62		30	65	75	450	30	4800	
P 4Torpedo	Fast Att.				12 60			13	25		50	4800	
lwonTorpedo	Fast Att.	10				15		16	40			3600	
An JuTorpedo	Fast Att.				6	6		6	35	1300	20	4800	
Chaho ClassTorpedo	Fast Att.		>60			66 62	52		80		40	4800	
Sin Hung/KosongTorp.	Fast Att.	8				72	98	-	35			2400	
Shersen ClassTorpedo	Fast Att.				4	3		4	160		41	12000	
KM 4Torpedo	Fast Att.				-	10		10	10			146	
Torpedo Boats	Patrol		150		229	200 32	:0						
_ight Patrol	Patrol	19			20			21	2			146	
Hantae	Landing	12, 18	8			8 8	10	12	150			5000	
Nampo	Landing		>100			00 100 13	0 95		82	375	40	4800	
Hanchon	Landing	9, 18			5 2	25	7	36	150		10	5000	
Kong Bang (Hovercraft)	Landing	24,27				125 13	0 135	130			52	8000	
Whiskey	Submarine		4		4 <i>'</i>	15	4	4	1030	13,000	8	4000	
Romeo, Chinese	Submarine	I	4					4	1100	16,000	10	4000	
Romeo, NK	Submarine	I	16		11	20		16	1100	16,000	10	4000	
YUGO mini-sub	Submarine	25				48	+ 40+	48	25		4	160	
Sang-O coastal infiltration	Submarine	29					3 22	12	277		8.8	800	
Frigates		I	1	1			1	1					
Corvettes	1	I	2	2			2	2					
Vissile Attack Boats		I	39	39	18			39					
Coastal Patrol Craft	1	I	388	388					1				
Vine Warfare Craft	1	11		23	42		23	56					
Amphibious Craft			194	194	75			324					
Submarines	1	I	24	24	15			84					
Trawlers		I	27		105			0.4					
TOTAL, ALL VESSELS	1	l	671	671	568			801	89,216				
		 	3/1	-				1	1,800				
Those Using Heavy Fuel Oi		3 28	1						,				
	60,000 4,077	3, 28 20							,				

ESTIMATE OF ANNUAL FUEL USE BY THE MILITARY SECTOR IN THE DPRK MILITARY SHIPS AND BOATS UPDATE 2002

FUEL CONSUMPTION RESULTS: MILITARY VESSELS

		1990			1996			2000		
		Per Vessel	Per Class	Per Class	Per Vessel	Per Class	Per Class	Per Vessel	Per Class	Per Class
		Fuel Cons.	Fuel Cons.	Fuel Cons.	Fuel Cons.	Fuel Cons.	Fuel Cons.	Fuel Cons.	Fuel Cons.	Fuel Cons.
Type of Vessel	Class	liters/year	liters/year	GJ/year	liters/year	liters/year	GJ/year	liters/year	liters/year	GJ/year
Nanjin Class	Frigate	1,191,223	1.19E+06	4.48E+04	893,417	8.93E+05	3.36E+04	1,042,320	1.04E+06	3.92E+04
T (Tral) Class	Lg Patrol	238,245	4.76E+05	1.79E+04	178,683	3.57E+05	1.34E+04	208,464	4.17E+05	1.57E+04
Sariwon Class	Lg Patrol	238,245	9.53E+05	3.58E+04	178,683	7.15E+05	2.69E+04	208,464	8.34E+05	3.13E+04
SO 1 Class	Lg Patrol	595,611	9.53E+06	3.58E+05	446,708	7.15E+06	2.69E+05	521,160	8.34E+06	3.13E+05
Artillerist Class	Lg Patrol	595,611	1.19E+06	4.48E+04	446,708	8.93E+05	3.36E+04	521,160	1.04E+06	3.92E+04
Hainan Class	Lg Patrol	698,851	4.19E+06	1.58E+05	524,138	3.14E+06	1.18E+05	611,494	3.67E+06	1.38E+05
Taechong Class	Lg Patrol	595,611	4.17E+06	1.57E+05	446,708	3.13E+06	1.18E+05	521,160	3.65E+06	1.37E+05
OSA 1 Class	Missile Att.	952,978	2.29E+07	8.60E+05	714,734	1.72E+07	6.45E+05	833,856	2.00E+07	7.52E+05
Komar Class	Missile Att.	381,191	5.72E+06	2.15E+05	285,893	4.29E+06	1.61E+05	333,542	5.00E+06	1.88E+05
Shanghi ClassGun	Fast Att.	381,191	4.96E+06	1.86E+05	285,893	3.72E+06	1.40E+05	333,542	4.34E+06	1.63E+05
Swatow ClassGun	Fast Att.	238,245	1.91E+06	7.16E+04	178,683	1.43E+06	5.37E+04	208,464	1.67E+06	6.27E+04
Chodo ClassGun	Fast Att.	476,489	1.91E+06	7.16E+04	357,367	1.43E+06	5.37E+04	416,928	1.67E+06	6.27E+04
K-48 ClassGun	Fast Att.	397,074	1.59E+06	5.97E+04	297,806	1.19E+06	4.48E+04	347,440	1.39E+06	5.22E+04
MO IV ClassGun	Fast Att.	238,245	5.00E+06	1.88E+05	178,683	3.75E+06	1.41E+05	208,464	4.38E+06	1.65E+05
Chongjin ClassGun	Fast Att.	381,191	1.79E+07	6.73E+05	285,893	1.34E+07	5.05E+05	333,542	1.57E+07	5.89E+05
P 6Torpedo	Fast Att.	381,191	2.48E+07	9.31E+05	285,893	1.86E+07	6.98E+05	333,542	2.17E+07	8.15E+05
P 4Torpedo	Fast Att.	381,191	4.96E+06	1.86E+05	285,893	3.72E+06	1.40E+05	333,542	4.34E+06	1.63E+05
IwonTorpedo	Fast Att.	285,893	4.57E+06	1.72E+05	214,420	3.43E+06	1.29E+05	250,157	4.00E+06	1.50E+05
An JuTorpedo	Fast Att.	381,191	2.29E+06	8.60E+04	285,893	1.72E+06	6.45E+04	333,542	2.00E+06	7.52E+04
Chaho ClassTorpedo	Fast Att.	381,191	2.63E+07	9.89E+05	285,893	1.97E+07	7.41E+05	333,542	2.30E+07	8.65E+05
Sin Hung/KosongTorp.	Fast Att.	190,596	1.43E+07	5.37E+05	142,947	1.07E+07	4.03E+05	166,771	1.25E+07	4.70E+05
Shersen ClassTorpedo	Fast Att.	952,978	3.81E+06	1.43E+05	714,734	2.86E+06	1.07E+05	833,856	3.34E+06	1.25E+05
KM 4Torpedo	Fast Att.	11,595	1.16E+05	4.36E+03	8,696	8.70E+04	3.27E+03	10,145	1.01E+05	3.81E+03
Torpedo Boats	Patrol									
Light Patrol	Patrol	11,595	2.43E+05	9.15E+03	8,696	1.83E+05	6.86E+03	10,145	2.13E+05	8.01E+03
Hantae	Landing	24,817	2.98E+05	1.12E+04	24,817	2.98E+05	1.12E+04	24,817	2.98E+05	1.12E+04
Nampo	Landing	23.824	3.48E+06	1.31E+05	23.824	3.48E+06	1.31E+05	23.824	3.48E+06	1.31E+05
Hanchon	Landing	24,817	8.93E+05	3.36E+04	24,817	8.93E+05	3.36E+04	24,817	8.93E+05	3.36E+04
	Ŭ Ŭ	113,400	1.47E+06	5.54E+04	113,400	7.37E+06	2.77E+05	113,400	1.47E+07	5.54E+05
Whiskey	Submarine	52.247	2.09E+05	7.85E+03	52.247	2.09E+05	7.85E+03	52.247		7.85E+03
Romeo, Chinese	Submarine	52,247	2.09E+05		52,247	2.09E+05	7.85E+03	52,247		7.85E+03
Romeo, NK	Submarine	52,247	8.36E+05	3.14E+04	52,247	8.36E+05		52,247		3.14E+04
		2,090	1.00E+05	3.77E+03	2,090	1.00E+05	3.77E+03	2,090		3.77E+03
		10,449	1.25E+05		10,449	1.25E+05	4.71E+03	10,449		4.71E+03
Frigates	I		1.19E+06	4.48E+04	,	8.93E+05	3.36E+04	,	1.04E+06	
Corvettes			4.76E+05	1.79E+04		3.57E+05	1.34E+04		4.17E+05	
Missile Attack Boats			2.86E+07	1.07E+06		2.14E+07	8.06E+05			9.40E+05
Coastal Patrol Craft			2.002.00			2.1.12.101	0.002.000		2.002.01	01102100
Mine Warfare Craft										
Amphibious Craft			6.14E+06	2.31E+05		1.20E+07	4.53E+05		1.94E+07	7.30E+05
Submarines			1.48E+06			1.48E+06	5.56E+04			5.56E+04
Trawlers			1.102.00	3.002.04		1.102.00	5.002.04		1.102.00	0.002.04
TOTAL, VESSELS			1.72E+08	6.48E+06		1.37E+08	5.15E+06		1.65E+08	6.20E+06
Those Using Heavy Fue	Oil		1.19E+06	4.48E+04		8.93E+05	3.36E+04		1.04E+06	3.92E+04
mose osing neavy rue		l	1.132+00	7.702704		0.332+05	0.00LT04		1.04LT00	0.022704
Service Vehicles			1 1/5 .07	2 745 .05		0.045.00	2.055.05		1.005.07	2 555 .05
TOTAL: VESSELS PLUS			1.14E+07	3.71E+05		9.04E+06	2.95E+05		1.09E+07	3.55E+05
LIGIAL: VESSELS PLUS	SERVICE VE		1.84E+08	6.85E+06		1.46E+08	5.44E+06		1.76E+08	6.56E+06

<u>Notes:</u>

- 1 <u>North Korea Handbook</u>, US Department of Defense, 1994. (PC-2600-6421-94). Pages 6-165 6-178.
- 2 North Korea, The Foundations for Military Strength. US Defense Intelligence Agency (1990?). Pp. 44-46.
- 3 Point Paper, Republic of Korea/North Korea: Military Capabilities (with Military Balance). JICPAC (ONK), Sept. 1993.
- 4 From <u>Opposing Force Training Module, North Korean Military Forces. Field Manual No. 34-21</u>. Headquarters Department of the Army (US). February, 1982. Chapter 15.
- 5 Jane's Fighting Ships, 1987-88. Edited by J. Moore, Jane's Publishing Co., NY, NY. P. 329-222.
- 6 Speed shown is that given with the range of the vessel, if specified.
- 7 Assumed similar to Chaho Class based on information in source 4.
- 8 Similar to Soviet "D3" class.
- 9 Source 4 shows this vessel as approximately twice as long and 10% wider than the Nampo.
- 10 Similar to Soviet "P 2" class.
- 11 Total shown for source 4 are vessels listed in source 1 as mine-capable.
- 12 Source 1 shows this vessel to be about 30% longer, 10% narrower than the Hanchon
- 13 Assumed similar to Swatow class (engine size)
- 14 "True-up" factors are used to inflate numbers of vessels by individual class (from 4 and 5) to the aggregate values presented in sources 2 and 3. True-up factors are not applied to Kong Bang hovercraft or mini-subs.
- 15 Generic value for fuel consumption by marine diesel engines from The Marine Power Plant, L.B.Chapman McGraw-Hill, 1942. This figure may (or may not) be slightly high for the DPRK Navy. Figure judged to be reasonable by a representative of a US distributor of marine diesel engines, who gave a range of 0.32 lb/hp-hr for best modern diesels, to 0.40+ for older diesels, with 20 hp-hr/gallon (0.364 lb/hp-hr) as a modern rule of thumb. Same representative also indicated that a range of 0.4 to 0.6 of maximum power use was a reasonable range for a ship cruising at sea.
- 16 Generic value for fuel consumption by submarine diesel engines from <u>Submarine Design and Development</u>, N.Freedman, Naval Institute Press, Annapolis, MD, 1984. P. 131.
- 17 Assumed similar to SO 1 class (engine size)
- 18 Assumed similar to K-48 class (engine size)
- 19 Assumed similar to KM-4 torpedo class (engine size)
- 20 Service vehicles for Navy assumed to include light vehicles, 2 1/2 ton trucks, and larger trucks and utility vehicles in the same proportions as are used in the ground forces. The number of these vehicles per person in the Navy is assumed to be the same as in the DPRK Army.
- 21 Frigate is assumed to be fueled with heavy oil. All other vessels are assumed to be diesel-fueled.
- 22 <u>North Korea Country Handbook</u>, Marine Corps Intelligence Activity, 1997. (MCIA-2630-NK-016-97). File Nkor.pdf, obtained from Federation of American Scientists WWW site, 5/21/02, and dated May, 1997. Data on naval vessels are mostly from pages 39 and 40 of this document.
- 23 <u>North Korea, The Foundations for Military Strength -- Update 1995</u>. US Defense Intelligence Agency (1995). Obtained from Federation of American Scientists WWW site, 5/21/02, and dated December, 1995.

- 24 World Navies Today: North Korea, from www.hazegray.org/worldnav/ (visited 5/22/02) suggests that the DPRK has "135 Kongbang class assault hovercraft, carrying 35-55 troops". Source 22 lists three types of these craft, with sizes ranging from 23 x 60.7 feet to 29.5 x 75.5 feet. Source 22 lists the speed of these vessels as 52 knots. No specific information on the propulsion systems used in these craft was included in either of these sources, but a somewhat larger troop landing hovercraft (47 x 88 feet) used by the US Navy, and with a slightly lower speed, is listed as having 16,000 hp (total?) in four turbine engines. http://www.fas.org/man/dod-101/sys/ship/lcac.htm (visited 5/22/02) lists the US "LCAC" as having 12,280 bhp, and "Fuel capacity is 5000 gallons. The LCAC uses an average of 1000 gallons per hour." Assume that the somewhat smaller DPRK vessels would have lower fuel consumption and power ratings perhaps 600 gallons per hour. According to source 23, production of the Kong Bang type II and III craft began in 1988, suggesting that the major portion of the Kong Bang fleet was produced after 1990. Assume that 10% of the fleet shown was in service by 1990, and 50% was in service by 1996.
- 25 Source 23 suggests that there are "over 48" YUGO submarines and 3 SANGO coastal submarines in the DPRK fleet.
- 26 Source 24 lists 18 "Sinpo class" small patrol boats, with 66.5 tons full load displacement, and 4800 hp diesels, and "up to 12" P-6 class small torpedo boats.
- 27 Estimate of 8000 bhp shown here for the Kong Bang hovercraft is a rough figure based on the specifications for the larger US vessel described in note 24. Fuel consumption, however, is based on the estimate given in note 24, not on the horsepower estimate.
- 28 Republic of Korea National Intelligence Service, "North Korea Military. The KPA: Troops & Equipment", from http://www.fas.org/irp/world/rok/nis-docs/defense08.htm, visited 5/21/02, lists the total naval force personnel for the DPRK at a total of 48,000, somewhat above the figure used here, but as the personnel totals do not directly affect fuel use estimates for this branch of the service, the figure from source 3 is used.
- 29 Engine size for the Sang-O submarines is a rough estimate based on reported engine size for other DPRK subs and the relative size of the different submarine models.
- 30 There does not appear to be any definitive intormation of an unclassified nature that could be used to qualitatively estimate the level of activity in the DPRK naval forces as of 2000. Analysts contacted in researching this update, however, indicate that the DPRK Navy does not seem to be operating under any particular fuel restrictions, and that the level of incursions (from DPRK vessels) experienced in ROK waters seems to be fairly consistent with prior years. As a result, we have assumed that DPRK naval activity was somewhat more (in terms of activity per vessel) than in 1996.

ESTIMATE OF ANNUAL FUEL USE BY THE MILITARY SECTOR IN THE DPRK **ENERGY USE IN MANUFACTURING MILITARY EQUIPMENT**

Detailed Data and Results	
---------------------------	--

UPDATE 2002	U	JP	D	A1	Έ	20	02
--------------------	---	----	---	----	---	----	----

Prepared By:	David Von Hippel	
Date Last Modified:	6/6/2002	
COMMON ASSUMPTIONS & PARAMETERS	6	
Lifetime of Ground Forces Equipment (yrs):		20
Lifetime of Small Armaments (yrs):		10
Lifetime of Naval Vessels (yrs):		30
Fract. of Weight of Equip. as Iron & Steel		90%

		Estimated	Average		Equip.	Total	Estimated
		Number	Weight	Made in	Lifetime	Weight	Iron&Steel
GROUND FORCES: VEHICLES		in Service	Each (t)	DPRK?	(years)	(t)	Needed (t)
	Notes:		1				
Tanks							
T-54/55		2,185	36	Yes?	20	7.87E+04	3.54E+03
T62/63/PT-76		3,106	36.4	Yes?	20	1.13E+05	5.09E+03
Assault		541	30	Yes?	20	1.62E+04	7.30E+02
Amphibious Vehicles +							
PT-76		189	14	Yes?	20	2.65E+03	1.19E+02
PTS		11	20	Yes?	20	2.28E+02	1.02E+01
K-61		364	15	Yes?	20	5.47E+03	2.46E+02
GAZ-46		40	2	Yes	20	7.97E+01	3.59E+00
Amphibious Ferry		68	50	Yes?	20	3.42E+03	1.54E+02
Tank Retriever		227	29	Yes?	20	6.57E+03	2.96E+02
Armored Fighting Vehicles				100.	20	0.072.00	2.002.02
BTR-60		3,622	10	Yes?	20	3.62E+04	1.63E+03
BRDM		393	5	Yes?	20	1.96E+03	8.84E+01
Truck/Tank Mtd Guns & Missiles			Ũ		_0		0.0.12.01
AAG		273	31	Yes?	20	8.47E+03	3.81E+02
BM-21	2	157	13		20	2.04E+03	9.19E+01
BM-20,24		17	9	Yes?	20	1.54E+02	6.92E+00
FROG 3/5		34	16		20	5.47E+02	2.46E+01
FROG 7		34	20	Yes?	20	6.83E+02	3.07E+01
Light Vehicles		04	20	1001	20	0.002102	0.07 2101
Jeeps		6,150	1.5	Yes	20	9.22E+03	4.15E+02
Motorcycles		2,895	0.2	Yes	20	5.79E+02	2.61E+01
2 1/2 T Trucks		72,403	2.9	Yes	20	2.10E+05	9.45E+03
Trucks and Utility Vehicles		72,400	2.0	103	20	2.102100	0.402100
Dump		26	13.5	Yes	20	3.54E+02	1.59E+01
Zil-135		34	12.4	No	20	4.24E+02	0.00E+00
Zil-133 Zil-151		547	6.1	No	20 20	4.24L+02 3.33E+03	0.00E+00
KRAZ-214		102	13.5	Yes	20 20	1.38E+03	6.23E+01
GAZ-63		410	2.9	Yes		1.19E+03	5.35E+01
Zil-157V		239	2.9 6.6		20 20	1.58E+03	0.00E+00
Power Boats		239 150	0.0	Yes	20 20	1.50E+03	6.76E+00
Other Heavy Equipment		123	, 6.6		20 20	8.12E+02	3.65E+01
Other heavy Equipment		123	0.0	165	20	0.120+02	3.052+01
TOTALGROUND FORCES VEHICLES	S	94,343				5.05E+05	2.25E+04
	- -	Estimated	Average		Equip.	Total	Estimated
		Number	Weight	Made in	Lifetime	Weight	Iron&Steel
		in Service	Each (t)	DPRK?	(years)	(t)	Needed (t)
	Notes:		1 Laon (t)	Di KK	(Jouro)	(9	
GROUND FORCES: OTHER ARMAME			,				
	-	10.000	6	Vee2	20	6005.04	2 70E LOC
Towed Guns and Missile Launchers		10,000	6		20	6.00E+04	2.70E+03
Light Arms, Various	4			Yes?	10	42,640	3.84E+03
TOTALGROUND FORCES OTHER						1.03E+05	6.54E+03

NAVAL FORCES				
Total Tonnage of Naval Vessels 5	Yes	30	8.92E+04	2.68E+03
Service Vehicles 7 4,077	(varies)	20	1.29E+04	5.66E+02
TOTALNAVAL FORCES	í í		1.02E+05	3.24E+03
AIR FORCES				
AIRCRAFT 6	No			0
Service Vehicles 7 6,235	(varies)	20	1.72E+04	7.55E+02
TOTALAIR FORCES			1.72E+04	7.55E+02
TOTAL IRON&STEEL REQUIRED/YR FOR MILITARY EQUIPMENT				3.30E+04
CALCULATION OF ENERGY REQUIRMENTS FOR MILITARY PRO	ODUCT M	ANUFACT	URING , 199	0
Energy Required to melt iron for steel 250 kgce/te crude steel	_	Note 8		
Average number of melts to produce military products 2	Ĩ	Note 9		
DPRK Steelmaking processes assumed to be 10% more energy	gy intensive	than in Chi	na	
Conversion Factor: 29.3	GJ/tce			
ESTIMATED COAL TO MANUFACTURE IRON AND STEEL MILITARY E	QUIPMENT		5.32E+05	Gl
Fract. Energy Use in Production of Military Equipment Represented by	Iron and Ste	el	60% /	Vote 9
ESTIMATED TOTAL COAL USED IN MILITARY EQUIPMENT MANUFAC	TURE		8.87E+05 GJ	
Ratio of Electricity Use to Coal Use in DPRK (Non-Military) Iron and Ste	el Industry		0.054 Note 10	
ESTIMATED TOTAL ELECTRICITY USED IN MILITARY EQUIPMENT MA	NUFACTU	RE	4.75E+04	ĴĴ
PROJECTION OF ENERGY REQUIRMENTS FOR MILITARY PRO	DUCT MA	NUFACTL	JRING	
Ratio of Military Equipment Output in 1996 versus 1990:		0.8	1	
Ratio of Military Equipment Output in 2000 versus 1990:		0.8	(See Note 11	1)
			-	
	1996	2000	2005R	
Projection of Coal Use in Military Manufacturing (GJ)	7.10E+05	7.10E+05	1.06E+06	
Projection of Electricity Use in Military Manufacturing (GJ)	3.80E+04	3.80E+04		
	2005D	2010R	2010D	
	20030	2010 1		
Projection of Coal Use in Military Manufacturing (GJ)		1.06E+06		
Projection of Coal Use in Military Manufacturing (GJ) Projection of Electricity Use in Military Manufacturing (GJ)	7.10E+05		7.54E+05	

Notes:

- 1 From <u>Opposing Force Training Module, North Korean Military Forces</u>. Field Manual No. 34-21. Figures in *italics* are guesses--no data available.
- 2 Weight of launcher only--prime mover assumed to be imported..
- 3 <u>Point Paper, Republic of Korea/North Korea: Military Capabilities</u> (with Military Balance). JICPAC (ONK), Sept. 1993. This source reports roughly 10,800 artillery pieces and rocket launchers. Figure shown nets out roughly guns and missiles included in the accounting of ground forces vehicles. Weight per unit is a rough estimate, and is probably more likely to be high than low.
- 4 Assumes an average of 40 kg of light arms per person in the Army.
- 5 Sum of displacement of Naval vessels. Actual weight of vessels may be different.
- 6 All aircraft assumed to be imported.
- 7 Based on service/ground support vehicle totals calculated in the Aircraft and Navy sheets, and the vehicle tonnages shown in the Ground Forces section of this sheet.
- 8 "The Energy Efficiency of the Steel Industry of China", M.Ross and L.Feng. Energy, Volume 16, no. 5 (1991), pp. 833-848.
- 9 Peter Zimmerman, personal communication.
- 10 Assumes that the ratio of electricity to coal use in military manufacturing will be similar to that in the iron and steel subsector of the DPRK's (assumed) non-military industries. Ratio calculated from figures in estimated energy balance for DPRK.
- 11 There is no direct information available on the intensity of military manufacturing in the DPRK in recent years. There have been reports of missile exports from the DPRK, but quantities exported are difficult to obtain, and it seems unlikely that such exports of relatively high-value armaments would have a substantial effect on overall military sector manufacturing. We assume that the level of military manufacturing is approximately the same as in 1996, though even that level may be difficult for the DPRK to sustain given the reported difficulties in the DPRK coal sector.