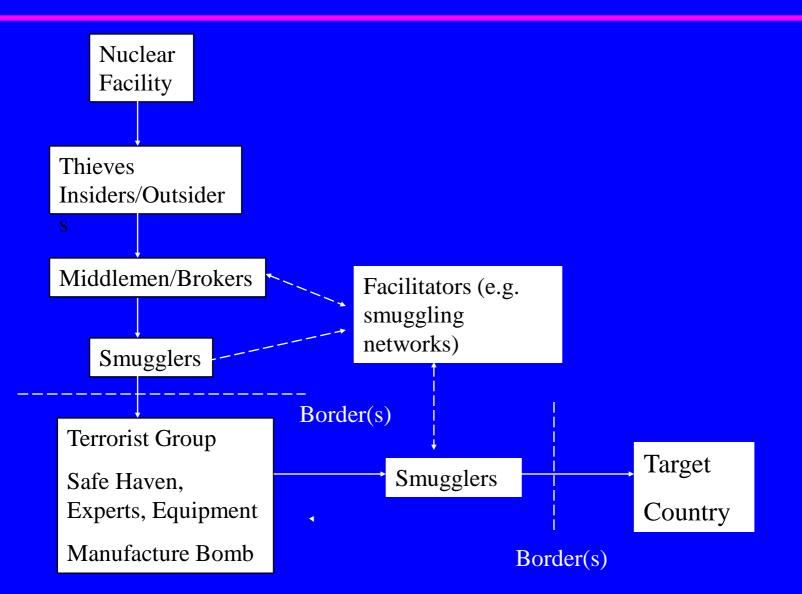
### The non-state actor nuclear supply chain

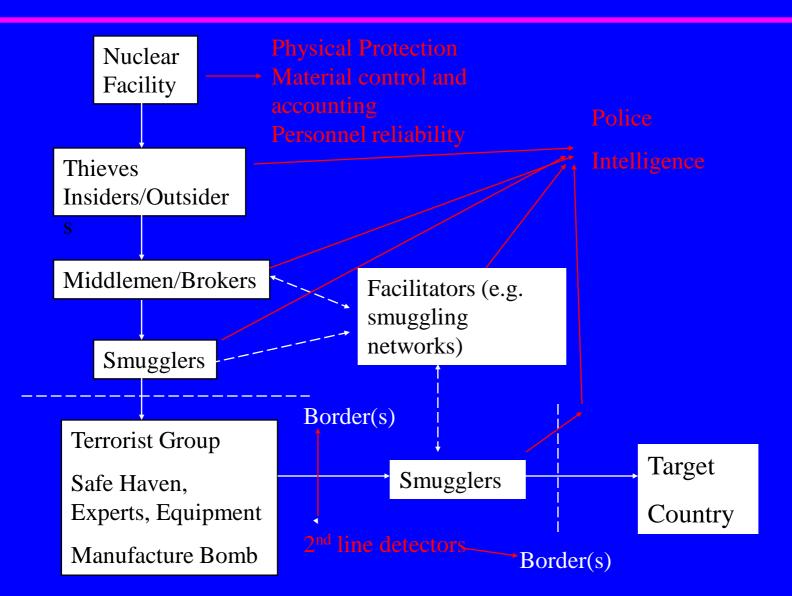
William Tobey and Matthew Bunn
Managing the Atom Project
Harvard Kennedy School
Workshop on "Cooperation to Control Non-State
Nuclear Proliferation: Extra-Territorial Jurisdiction
and UN Resolutions 1540 and 1373"
4 April 2011
http://www.managingtheatom.org

### What has changed?

Compared to 30-40 years ago:


- Emergence of terrorists bent on wholesale, not retail, destruction
- Wide spread of basic nuclear-weapons-related knowledge and information – publications, internet
- Spread of technological expertise
  - Sophisticated parts can be made anywhere where you can set up a precision computer-aided manufacturing machine (e.g., Malaysian plant for Khan network centrifuge parts)
- Globalization
  - Far easier to move people, ideas, money across the world
  - Far easier to put together multinational networks

#### Two supply chains


- Weapons-usable nuclear material
  - Typically insider thieves (outsiders, or both, also possible)
  - Brokers, middle-men, smugglers
  - So far, unsophisticated, mostly not connected to organized crime
  - Supply-driven, looking for buyers
  - Are there more sophisticated actors who aren't getting caught?
- Nuclear weapons-related technology
  - Sophisticated scientists and engineers are the suppliers
  - Wide range of brokers, front-companies...
  - Often sophisticated strategies to get past controls
  - Demand-driven, from states seeking technology for weapons programs (though networks also proactively peddling wares)

*These supply chains <u>may</u> intersect in the future, but have been mostly separate to date* 

### Nuclear materials supply chain



### Nuclear materials supply chain



# Reducing risk at each step of the nuclear material supply chain

#### Preventing theft:

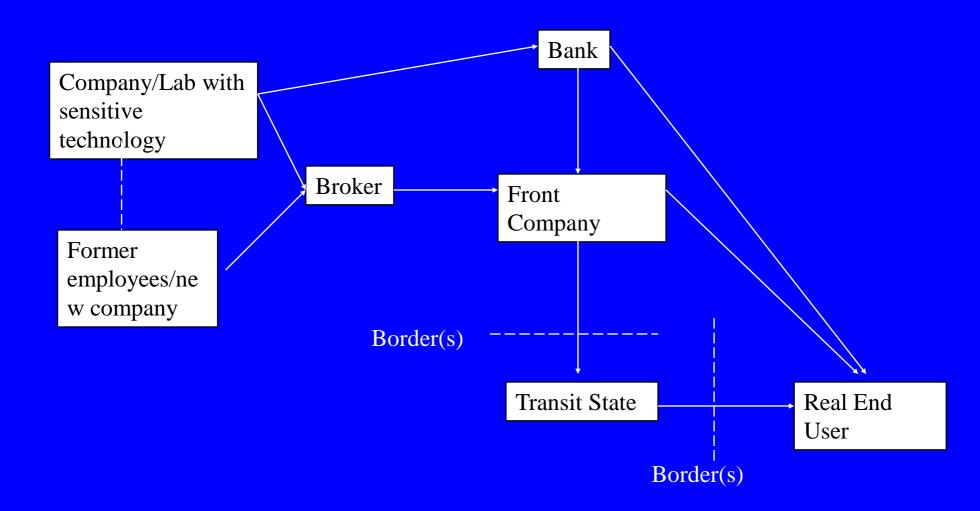
- Physical protection (equipment, security culture)
- Material control and accounting
- Personnel reliability
- Countering smuggling/brokering
  - Police, intelligence (including stings, rewards for information)
  - Detectors at borders
- Countering terrorist plots
  - Address root causes of extreme violence
  - Identify, target groups with nuclear ambitions
  - Prevent large-scale financing
  - Prevent nuclear-expert recruitment
  - Countering nuclear delivery difficult problem

# Nuclear material: learning from success and failure

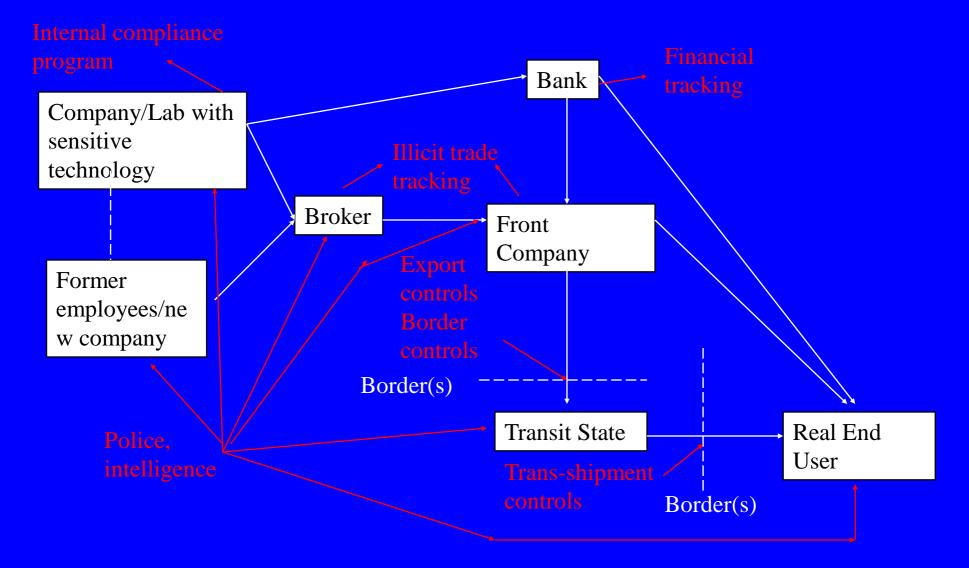

#### ♦ Failure: ~ 20 known thefts of HEU or Pu

- All but one insiders, bulk handling facilities
- All but one not noticed until material was seized
- Lessons: Strengthen material control and accounting, minimize bulk processing, limit access, institute personnel reliability programs

#### Success: seizures


- Nearly all from (a) luck, (b) participants or others they tried to involve informing authorities; or (c) sting operations
- Lessons:
  - » Establish police units focused on nuclear smuggling in all key source and transit states
  - » Expand international police and intelligence cooperation
  - » Detectors at borders can push smugglers to riskier routes where they are more likely to be caught – if alternative routes watched

## Nuclear material is not hard to smuggle – plutonium box for first-ever bomb




Source: Los Alamos

### Nuclear technology supply chain



## Nuclear technology supply chain



# Nuclear technology: learning from success and failure

- Failure: A.Q. Khan network operates for ~20 years in ~20 countries
  - Lesson 1: <u>all</u> countries need effective export controls, enforcement
  - Lesson 2: companies need effective internal compliance programs
  - Lesson 3: sophisticated global networks are hard to stop
- Success: International police and intelligence cooperation ultimately takes down the network
  - Lesson: critical to establish broad intelligence and police cooperation targeted on black-market nuclear technology networks
- Failure: Minimal or no jail time for network operatives
  - Some cases: laws so weak there were no major violations
  - Other cases: evidence can't be produced in court
  - Other cases: poor sharing of evidence between countries
  - Other cases: weak commitment to enforcement

#### Corruption is a central enabling element

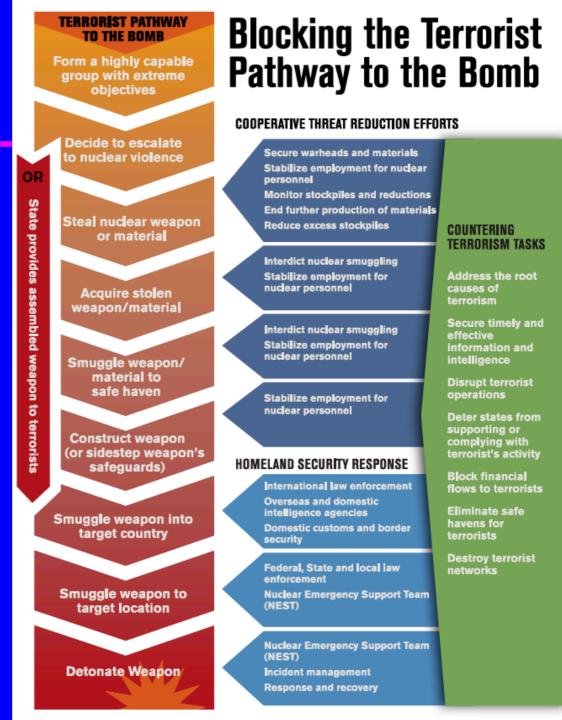
- Corruption is critical to all these networks people who, for money, knowingly:
  - Provide nuclear weapons-related material or technology
  - Facilitate theft (e.g., providing inside information on security)
  - Approve illegal exports
  - Allow materials across borders
  - Etc.
- Two campaigns needed:
  - A *nonproliferation culture* campaign getting people in all key positions to understand that the spread of these materials and technologies is a danger to their countries and to the world
  - A counter-corruption campaign training, transparency measures, penalties, incentives, etc...

Participants in corrupt environments may perceive little risk

#### Can we deter supply chain participants?

- Increase perceived probability of detection:
  - All the measures just described
- Increased perceived scale of consequences:
  - Put in place "appropriate effective" criminal laws prohibiting participation in such networks, with stiff penalties
  - Renew commitment to enforcement in all countries
  - Strengthen police and judicial cooperation
  - Extra-territorial jurisdiction: ability to punish offenders wherever they may be
    - » Required by Physical Protection Convention, Nuclear Terrorism Convention

*This is where 1540, 1373, and extraterritorial jurisdiction contribute to reducing the risk* 


#### Deterring different participants

- Many participants may be deterred/dissuaded by increased perception that what they are doing is wrong
  - Nonproliferation culture: belief this threatens many
- Different risks may deter different participants
  - Desperate low-level smugglers may require high chance of being caught, high consequence if they are, to deter them
  - Well-to-do engineers may be deterred by more modest risks though many millions of dollars are at stake in some deals
  - Legitimate companies often strongly motivated by risks to their reputation
  - Once terrorists are smuggling an assembled bomb, or ready-toassemble pieces, the object(s) will represent a huge amount of effort and money – <u>may</u> be deterred by relatively modest chance of being intercepted and having it all go to waste

### Backup slides...

### Blocking the terrorist pathway to the bomb

*Source: Bunn*, Securing the Bomb 2010: Securing All Nuclear Materials in Four Years (2010)



# Multi-layer defense – focusing on key adversary choke points

◆ #1 priority: prevent theft of potential nuclear bomb material

- Once the material has left the facility where it is supposed to be, it could be anywhere, challenge mutiplies a thousandfold
- Preventing theft is a large but do-able mission potential bomb material exists in hundreds of buildings around the world (not tens of thousands or millions)
- #2 priority: information/incentive warfare to encourage adversaries to inform, weaken adversary "market"
- Only then does division into land/sea/air interdiction modes become important

#### Encouraging adversaries to inform

Known successes in seizing stolen HEU or Pu predominantly *not* from border detectors, but some one informing – often as thieves are trying to find a buyer.
 "Human factor" – individual who proves unreliable – is the weakest link, both for the good guys and the bad guys

Hence highest-leverage post-theft point is strengthening the good guys' human factor, weakening the bad guys':

- Adequate pay for nuclear workers, guards, and effective training (including on dangers of nuclear theft and terror)
- Toughen penalties for nuclear theft and collaborating with thieves and widely publicize those penalties
- Create easy means for anonymous reporting, make sure everyone knows about them global "WMD 911"
- Offer substantial, well-publicised rewards for information leading to preventing a nuclear theft, recovering stolen material

# Intelligence and police operations to smash nuclear smuggling rings

- Making reliable connections between those who want nuclear bomb material and those in a position to steal it has proved difficult in the past – "market" is weak
  - Difficult to find each other
  - Both buyers and sellers fear stings and scams difficult to establish bona fides, even once initial contact made
- A good defense should seek to make this connection more difficult, catch those exploring this market
  - Demand stings (posing as potential nuclear material buyers)
  - Supply stings (posing as potential nuclear material sellers)
  - Expertise stings (posing as providers and seekers of nuclear expertise)

## Expanded police capabilities, int'l police + intelligence cooperation

- Programs should be put in place to ensure that every relevant country has:
  - 1 unit of national police trained and equipped to deal with nuclear smuggling cases
  - All local and other police/intelligence forces informed as to who to call in such a case
  - Access to high-quality nuclear forensics facility to send seized material to

 Substantial increase in international police and intelligence cooperation needed on nuclear theft and smuggling – to at least the level of in-depth cooperation now present on counter-terrorism – as threat is transnational

 In-depth cooperation with Russian FSB in particular difficult but essential to success (some successful FBI, CIA cooperation in other areas under way)

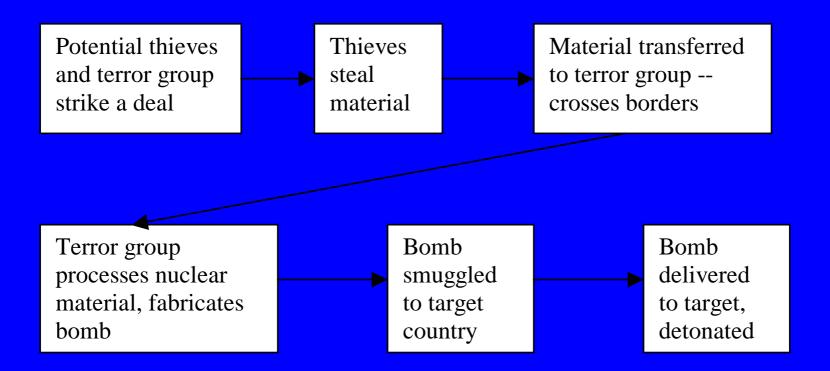
#### Establishing a global NEST capability

- Nuclear Emergency Support Teams a crucial capability domestically – essential to confirming that hoaxes are not real threats, having at least some capability to find and disable a real threat (if we know where to look)
- Search for remains of Cosmos 954 in Canada proved NEST's ability to operate internationally
- *But,* should put high priority on ensuring all needed arrangements in place for rapid deployment anywhere in the world – including visa exemptions, accords on import of detectors containing radioactive sources, etc.
- May be desirable to undertake NEST cooperation with Russia and other leading nuclear states

# Nuclear land/sea/air interdiction – a tremendous challenge

- Length and complexity of borders, huge scale of traffic across them, small size and signature of nuclear material, all make job extraordinarily difficult – some investment desirable, but these layers of defense will always be porous
- 1000s of tons of illegal drugs, millions of illegal immigrants, come into United States every year, despite billions of dollars invested in stopping them
- Even if appropriate training and equipment provided, corruption is a key problem with border and law enforcement forces in many of the most critical countries

## Interdiction: need for a systems approach, focused on adversary adaptation


#### Need total system design and approach

- "How well can this detector at this crossing point detect HEU?" is only one small (though important) part of the question
- Rather, need to understand total system effectiveness, in the presence of intelligence adversaries' efforts to get around it
- Extensive red-teaming essential, to identify plausible tactics to get around defenses, options for closing those loopholes
- Example: may be possible (and worthwhile) to make it difficult to get an assembled nuclear bomb into the United States in a cargo container. But:
  - Air: what about flying it in on an uninspected Cessna or helicopter?
  - Sea: what about sailing it in the hold of a yacht?
  - Land: what about bringing ready-to-assemble components in, in backpacks, through wild border areas (e.g., Minnesota "boundary waters")

### Interdiction: thinking through adversary responses

- Example: portal monitors installed to scan 100% of containers destined for U.S. at a foreign "megaport":
  - Can the adversaries avoid detection by shielding their HEU, putting it in a shipment that provides shielding, or creates heightened background radiation?
  - Bribe the monitor operator not to notice a "hit," or not to scan one container?
  - Bribe the seal-emplacer to allow an object to be placed in a container *after* it has been scanned?
  - Defeat the seal (open the container, place an object inside, and reseal without this being detected)?
  - Bribe the seal-checker not to notice a tampered seal? (When does this seal-checking occur? How many seals are "naturally" broken?)

### One potential terror chain...



#### Anatomy of a terrorist nuclear plot

- What might a terrorist nuclear plot look like?
  - Might be modest footprint (e.g., a dozen people)
  - Could potentially use facility similar to standard machine shop may not require equipment whose purchase would raise eyebrows
  - May not require classified information
  - In most cases <u>would</u> require:
    - » Some simple chemical processing (e.g., dissolving stolen material in acid, converting to metal)
    - » Casting metal into desired shapes
    - » Machining cast metal
    - » Well-made and well-designed explosives
  - May use some form of legitimate business for cover (e.g., company manufacturing metal parts)
  - Likely occasional visits and communications with central organization
  - Transport to target country/site if that is not where the weapon is built (may be built to be transported in pieces, quickly assembled)

### Crucial roles of police agencies

- Protecting nuclear sites and transports
  - Many rely on police for armed response to theft/sabotage attempts
  - Need in-depth awareness of characteristics, layouts, security plans for all facilities in your area
  - Need regular testing of response capabilities, coordination
- Stopping nuclear smuggling
  - Past successes almost all the result of good police and intelligence work – stings, convincing conspirators to inform, etc.
  - All key source and transit countries need national unit like Georgia's – and other police trained on when to contact them
  - Border forces should receive at least basic training on nuclear smuggling
- Stopping nuclear terrorist plots
  - Will require recruiting specialists, raising large amounts of money, conducting variety of noisy activities – many potential indicators
  - Bomb assembly team may operate in developed country